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Abstract

The present paper is a final technical report on the research programme NCCW-73

accomplished within co-operation between NASA of the USA and GOSKOMOBORONPROM

of Russia in the field of aeronautics. The report contains basic results of studies in two areas,

"Analysis of postbuckling behavior of composite panels" and "Development of general model of

joints in composite structures"; these results were obtained in conformity with requirements of

NCCW-73.

In addition, consideration is given to some related issues, and proposals for further

studies are formulated.
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1. Introduction

Implementing the composite structures is regarded as one of the most important areas of

improving the state-of-the-art aircraft and space technologies. Of current interest here are

insufficiently explored problems of stability and postbuckling behavior of thin-walled composite

structures, as well as the evaluation of stresses in, and strength of, .joints in the composite

structures. The Russian/American joint working group on aeronautics established within the

limits of co-operation between GOSKOMOBORONPROM and NASA has selected these

problems as high priority for co-operation in the period 1995 - 1996: they are the core of the

NCCW-73 joint research programme.

In accordance with the requirements of NCCW-73 the present report provides major

results of studies accomplished by specialists of TsAGI and MGATU. The results are grouped

into two large parts: "Postbuckling behavior of composite panels" and "General model of joints

of composite structures"; these are presented in the report sections 2 and 3, respectively.

The paper is devoted mainly to theories, but, with the aim to validate the computational

models, contains in some areas comparison with test results. Problem formulation, basic

assumptions and the underlying relationships are exposed for each of the parts at the beginning

of the corresponding sections. Both pa_ts contain not only the computational algorithms but also

examples of concrete analyses and some recommendations.

Concluding remarks on the work as a whole, the lists of references used, and Appendices

are provided in sections 4, 5, and 6 of the report.

Authors wish to thank Dr. D.Starnes of NASA Langley Research Center for close

collaboration in formulation and discussion of the work, and make excuses for the unavoidable

brevity of presentation -- and for some imperfection in the document design.
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2. Part 1. Postbuckling behavior of composite panels

It is generally known that a cover skin in a stiffened panels of a thin-walled aerospace

structure can buckle locally under compression, shear and multiaxial stresses when loads are less

than the limit values. There arises the problem to evaluate the load-carrying capability of such

structures, taking into account the nonlinear postbuckling behavior of skins. In this case, one is

required, firstly, describe rather adequately the stress-strain state (SSS) of buckled skin cells

between the stiffeners; secondly, the loss in stiffnesses of the buckled skin should be allowed for

in the global analysis of the built-up structure. As applied to metal structures, these two aspects

of the problem were studied analytically, by experiment and numerically in a large number of

papers, starting from the classical works of Bubnov, Karman, Papkovich, Timoshenko,

Marguerre, and Wagner [1 - 9].

For structures with composite materials similar studies were conducted in the recent years

only (for example, see writings by NASA Langley Research Center specialists M.Stein,

D.Starnes, and M.Nemeth [I0 - 12]), chiefly in the first of the above aspects. Taken into

consideration are important features of the composite structures such as anisotropy, multiple

layers, brittleness; these are known to substantially complicate the problem and make the

composite panel postbuckling behavior notably differing from behavior of metal parts.

The present paper attempts an engineering approach to the problem for multiaxially

(compression and shear) loaded flat stiffened panels, paying attention to determination of both

postbuckling behavior of an individual cell (a plate) in the composite skin and

stiffnesses/strengths of the panel as a whole which is composed of rectilinear ribs and the

buckled skin that interact. The work is assumed to be continued, first of all, towards

complication of both the structure geometry and the load conditions.

2.1. Problem formulation and principal relationships for orthotropic panels and plates

A panel is assumed to be an orthotropic, symmetric-layup composite plate uniformly

stiffened with ribs (with the step sizes a and b) with no eccentricity in the two mutually

perpendicular directions, see Fig. 2.1. The plate thickness and stiffnesses are uniform; the

orthotropy axes coincide with directions of longitudinal and transverse ribs. All ribs of a

particular direction are made of a unidirectional composite or a metal; their characteristics are

identical in the two directions. The panel is loaded in plane by uniform compression or tension

along the two axes and by shear. In both prebuckling and postbuckling stages of skin

deformation every periodically repeated fragment (consisting of the rectangular skin cell and the

adjacent rib portions) is in identical conditions, and its ribs and edges {x=0, x=a, y=0, y=b} of

cell (which is plate with dimensions a and b) remain rectilinear. If the rib torsional stiffness is

insignificant and the buckled panel has the out-of-plane displacement w(x,y), for this

displacement we have simple support boundary conditions at these edges.

Thus, the postbuckling behavior of the panel after skin buckling, is characterized by an

identical multiaxial bending stress-strain state in each cell; it is described by nonlinear equations

of Karman type with the corresponding boundary conditions. In this connection the longitudinal

forces redistribute between the ribs and the skin, and the cells behave as panels with lowered

(reduced) stiffnesses. Subsequently, the panel can fail in certain areas of the skin/ribs or because
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of global buckling of the panel as a whole (i.e., as an inseparable combination of ribs and the

skin with reduced characteristics).

Below, in 2.2 - 2.4, we provide the analytical solution to the problem on stability and

postbuckling behavior of the simply supported orthotropic panel, the solution being valid for

both a cell of the skin in the panel above and the separate unstiffened composite plate. This

solution is the basis for us to consider in 2.4 more thoroughly

- strength and stiffnesses of a buckled skin and

- aspects of its interaction with ribs in the stiffened fiber reinforced laminate.

The major goal here is to derive rather simple formulae for calculating the reduction

coefficients that are included in the general analysis and including (in particular cases of

compression/shear loaded metal panels) the classical results by yon Karman and Marguerre.

Let us adopt the assumptions (traditional for multilayer composites) about

quasihomogeneity and orthotropy of the layers and their being elastic; with this, stresses and

strains in a k-th layer are interrelated by the generalized Hooke's law [13, 14]

t xtKtxtOr [ 01= 15y ,

T xy 7 xy

i,j = 1,2,3. (2.1)

Here Cij are layer stiffnesses referred to the x and y axes; sigma and epsilon are the

stresses and the strains m the layer. In accordance with the Kirchhoff-Love hypothesis, the

strains are

--  y0r+z
7xy LTxy0J [_xyJ

(2.2)

(the z coordinate is measured from the panel mid-surface along the normal thereto ), and

the strains and curvatures of the mid-surface {e0}, {_} are related to its displacements u, v, w

as follows:

a_o Ox 2\0x/
(0w'] __ _w 0w2 Ov 1 2 Ou Ov ,

' 8Y°=_+2k. 0y j ' Yxy0=0y-_ 0x 0y

_X m

02w 02w 02w

0x 2 , Zy - - 0y2 , X,,y = -20x---_ (2.3)

Assume that the multilayer composite panel fails when any of the layers reaches its

limiting state at any point. The limiting state is determined by using an appropriate polynomial

strength criteria based on stresses along the layer orthotropy axes.

Adopting these assumptions, the following relationships are valid for the panel as a

whole:
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- elasticity:

°l (2.4)

-Bll B12 0 0 0 0

B21 B22 0 0 0 0

0 0 B33 0 0 0

0 0 0 Dll DI2 0

0 0 0 D21 D22 0

0 0 0 0 0 D33

- equilibrium equations in terms of displacements:

c32u c32u ,_, , c32v Ow 32w

BII_ --j-+B33-0y 2 (BI2+ dxdy I Ox 0X 2
+ D33)-£-_- + B I +(BI2 +833)

_vV G_2W _ 32W

+ B33 0y2@ OxOy Ox
-0,

(2.5)

G_2U G_2V 02V O_W 02W

(BI2 + 833) 0x---_ + B33 _-2-+ B22 _ T +(Bt2 + 833) 0x c3x0y + 822

0w O2w 0w O2w

0y Oy 2 + B33 0y 0X 2

=0

84W O4W C_4W O2W C_2W

DIt--_-+2(DI2 +2D33) 0x20y 2 +D22 Oy---T--Nx 0x----T-Ny 0y2

C_2W

--- 2Nxy 0x0y - 0,

- expression for the total potential energy:

]2[1}_IB Ic3u+/('0w'] 2 +2B, Ou+l(0wlZqI0v+l(Owl21

_:_JoJol"L_ 2_oxJ =_ 2,axJ jLay 2_y; j

22 0V 0W D (02w'] 2+ 22 +,_(ow) + +
2k0yY J 0x 0x IlL 0x2 )

(2.6)

+ (2.7)

O2w02w (02w']2 4D (O2w) 2 0u 0v+ (0u+0vll

+2Di2 0X 2 6_Y2 "1-D22 + 0X 0y \0y_. oY 2 j 33_.0x0y j + 2Tx--+ 2Ty 2Txy 0xjjdxdy"

Here, {N}=[NxNyNxy] T, {M}=[MxMyMxy] T are the stress resultants and the moments in

the plate; Tx,Ty.Txy (refer to Fig. 2.1) are the external loads; Bij and Dij are panel stiffnesses to

be determined on the basis of [Cifl K by using the usual equations from [14, 15].

When analyzing behavior of the skin and ribs in a panel, use is made of
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- conventional conditions of equilibrium and their joint deformation and

- the relations of the elastic bar theory.

2.2. Stability of orthotropic plates

Following the suggested applied method for analyzing the load-bearing capacity of

composite panels, the first stage is to determine eigenvalues and the corresponding proper

functions of the boundary value problem that describes stability of an orthotropic panel under

compression, shear, and multiaxial load. Write the out-of-plane displacement of the simply

supported panel as the double trigonometric series:

w= _--'_--_AmnsinKmxsinKnY , Km =mn/a , Z.n
in =1 n =1

= nrt / b , (2.8)

where a and b are the length and the width of the panel.

Substitute the expansion (2.8) into the equilibrium equation (2.6) in which the stress

resultants in nonlinear terms should be replaced by their subcritical values, i.e., Nx=-Tx, Ny=-Ty,.

Nxy=-Txy. Applying the Bubnov-Galerkin procedure, obtain the infinite homogeneous system of

linear algebraic equations for the vector {A}:

[M] {A} = 0, (2.9)

where [M] is a square matrix whose diagonal coefficients are of form

Mdd =/1:274DI1D22 (m40t + 2m2n213 + n4/_)_ Txm2 _ Ty n2a2/b2 .

Off-diagonal coefficients of the matrix [M] are written as

Mdl

(d,l)

32 a_ mnij

7bTxy (m2 _ i2Xn2 _ j2 )

0 npH m +i = 2,4,6,...;

npn
m + i = 1,3,5,...,

n + j = 1,3,5,...;

n + j = 2,4,6,...

Critical stress resultants of compression (Tx* and Ty ) and shear (Txy) are sought in the

following form:

P_rt ! P_cthnPkllno l_h_vi_r af _amn_clt_ n_n_l¢ R



7,/I_x 71:" * * 7_- * * _- *• = ID22 k x , Ty = tD2: ky, Txy = DliD22 kxy.

(2.10)

Transform the set of simultaneeus equations (2.9) taking into account (2.10):

[MI {A}=0.
where [M] is a matrix whose elements depend on coefficients kx, ky, and kxy:

Mdd = m'n'kmn - kxm 2 kyn'a-/b" ,

Mdl =

(d*l)

32 a mnij xy(m 2 t
0 for m+i= 2,4,6 .... ;

for
m + i = 1,3,5 .....

n + j = 1,3,5 .... ;

n + j = 2,4,6 ....

k mn = m2°t / n2 + 213+ n 2 / (am:).

For the particular loading cases we will find eigenvalues and their proper vectors of the

matrix [M] and study the influence of the stack orthotropy on panel stability.

2.2.1. Compression

In the case of uniaxial compression the set of equations (2.9) breaks down into individual

equations for the coefficients kx •

kx = kmnn 2

Each value of kx is corresponded to by an eigen vector {q}=[0, 0 .... qmn=l, 0 .... ]T and

a natural shape w = sin_,mX sin X,,y. The stability coefficient kx* is found from the condition

kx = min(kx); the numbers of half-waves, m and n, at which kx becomes minimum, are hereafter

identified by m0 and no (no =1 for uniaxial compression). The stability coefficient kx* is

corresponded to by the natural shape w =sin(m0nx/a ) sin(w/b ). The critical compression

stress resultant Tx* is found by using (2.10).

Study the influence of the fiber orientation angle on stability of orthotropic panels made

from carbon fiber reinforced plastic. Assume that the stack consists of alternating layers with

fiber orientation angles +q_ and -q_; the total thickness of the layers h=l.1 .10-sin; characteristics

of an elementary layer: E1 = 180 GPa, E2 = 6.2 GPa, G_2 = 5.0 GPa, la2_ = 0.26; panel

dimensions, a=b=0.4 m. Figure 2.2 shows the function Tx*(+q)) (line 1). For a square panel the

critical stress resultant reaches its maximum at the fiber orientation angle q_= +45 °.
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This solution conforms to the case of frcc lateral displacement of longitudinal edges. It is

known that airframes usually incorporate multispan panels. Displacements of longitudinal edges

of such a panel (being a skin supported by stringers) can be restrained or not allowed at all. In

this case the plate compression loaded in a particular direction may experience biaxial

compression due to the Poisson effect, see [16]. Let us consider two types of boundary

conditions:

- panel edges can freely displace in plane (configuration 1);

- longitudinal edges of the panel cannot displace laterally (configuration 2).

In the first case, Ty= 0 over the longitudinal edges. In the second case, a mutual

displacement of longitudinal edges along the OY axis is absent, i.e., Av=v(y=b)-v(y=O)=0.

Solution of the two-dimensional problem provides Ty= TxBlz/Bll. Thus, the plate is subjected to

biaxial compression. Combine the homogeneous systems of linear algebraic equations

corresponding to the two types of panel boundary conditions. In this case the only change will

be in diagonal components of the matrix [M]:

7_ 2

Mda = b--5-_,D22 (m%t +2m2n213+n 4/ot)-T_(m" + f_n2a 2/b2).

Here fx is a coefficicnt depending on the conditions posed on the edge displacements:

fx=O for the configuration 1, and fx=Bl2/Bll for the configuration 2. The curve 2 in Fig. 2.2

corresponds to the case of uniaxial compression of a panel with fixed longitudinal edges. For a

square panel the criical compression stress resultant reaches its maximum at the fiber orientation

angle +_35° .

Lct now the plate whose edges can displace freely, is subject to compressive stress

resultants Tx and Ty. Determine the critical compression stress resultants Tx* and Ty. The

generic homogeneous system of linear algebraic equations (2.9) breaks down into individual

equations for the coefficients kx and ky:

kx + ky(na)2/(mb) 2 = n2kmn • (2.11)

From (2.11) wc establish coefficients k×0 and ky0 for the panel loaded with "isolated"

stress resultants Tx and Ty. If Ty=0 then kx0=nZkmn, and ky0=mZkmn(b/a) 2 for Tx=O. By

minimizing kx0 and ky0 with respect to the numbers m and n we determine the stability
* . " * • 2 '_

coefficients: kx0 =mm(n'kmn) and ky0 =mln[m kmn(b/a)']. Return now to the case of biaxial

compression and determine the stability coefficients kx* and ky. Let the stress resultant Ty is

varied in proportion to the stress resultant Tx: Ty= WTx. From (2.11) (after simple

transformations) one can find

k_ = kmnn2 ky = gtkm°n2
I + _(na / mb) 2 ' 1+ w(na / mb) 2

By minimizing kx and ky with respect to the numbers of half-waves, find the stability

coefficients for the proportional loading:

k_ = mini kin"n2
l+_(na/mb) 2 '

ky = _tkx .

2. Part 1. Postbuckling behavior of composite panels 10



The pair { kx*, ky } is corresponded to by the natural shape

--0

w = sin(mo_X / a) sin(norcy / b) .

Use now (2.10) to determine the critical compression stress resultants Tx* and Ty* and

study the effect of the fiber orientation angle fi on stability of panels made from carbon fiber

reinforced plastic. Figure 2.2 shows the function Tx*(+q_) for a square panel (line 3) and a

rectangular panel (a/b=3, line 4) under the proportional loading (W = 0.3). Applying a biaxial

compression, the critical stress resultants in the square plate are maximum at O = +45 °, and

those in the rectangular plate, at O = +_55°.

2.2.2. Shear

Assume that the orthotropic plate is loaded with a shear flow Txy only. Elements of the

matrix [ M ] in this case are

M dd = m2n2kmn ;

f 3__2_2a mnij
for m+i = 1,3,5,. ,n+_ j = 1,3,5, ..;

for m + i = 2,4,6, ..,n + j = 2,4,6,..

Transform the homogeneous system (2.9) of linear algebraic equations into

[S] {A} - _. {A} = 0. (2.12)

Here [S] is a square matrix whose components include

S dI

(d_l)

mnij

rm°(m2i2Xn j2)
0

for m _+i = 1,3,5 ..... n + j = 1,3,5 .... ;

S dd = 1, rmn

for m + i = 2,4,6 .... ;n + j = 2,4,6 .....

32a

_2b(m4ct + 2m2n 2 + n 4 / or)"

The eigenvalues _. are related to the coefficients kxy via the equality kxy = 1/(k -1). The

matrix [S] for our problem is asymmetrical and may be transformed into an upper (or lower)

Hessenberg matrix; thereafter the QR-factorization or QL-factorization may be employed to

compute eigenvalues k and eigen vectors {q}, refer to [17]. The stability coefficient k*xy is

found from the condition k*_y=min[1/(X -1)] = 1/[max( _)-1]. It has the eigen vectors {q*} and

the natural mode

2. Part 1. Postbuckling behavior of composite panels 11



o9 o0
D$

w = _q_ sin _m X sin _nY"
m=111=1

Consider the effect of the fiber orientation angle q_ on critical shear stress resultant T*xy,

derived from (2.10) for the abovesaid orthotropic panel out of carbon fiber reinforced plastic:

laminate thickness h=l.1 10 -3 m; width b=0.4 m; length a=(0.4; 0.8; 1.2; 2.0) m. The results are

presented in Fig. 2.3. It is usual to assume that the structures loaded in shear should have fibers

laid at an angle of +45 °. Examination of T*xy(+q),a/b) suggests that such a layup is effective for

square panels only. As to rectangular panels, a maximum value of critical shear stress resultants

is achieved with different fiber orientation angles. In particular, for a panel with the aspect ratio

a/b=3 the maximum value of T*xy is achieved at q_=+_59°. The difference between

T*xy(+45°)=3.2 kN/m and T*xy(+_59°)=3.8 kN/m is 18.7%, i.e., the critical shear stress resultant

reduces notably, and the structure gcts less effective in respect of weight. The computation was

based on 30 terms of the series.

The results of computation of critical shear stress resultants were validated

experimentally by using a plate out of CFRP reinforced at an angle of +45 ° and having the

following characteristics: a=0.196 m; b=0.096 m; Dll=D22=0.685 Nm; D12=0.548 Nm;

D33=0.585 Nm. The experimental value of the stability coefficient is k*xy=9.67, see [18]; the

theoretical value is k*xy =9.79, i.e., the computed results satisfactorily correlate with the

experiment. Figure 2.4 demonstrates the shape of the panel surface after buckling, and Fig. 2.5

shows the natural mode of the experimental panel. The comparison of the natural mode with the

postbuckling shape of the surface shows that there exists similarity bctwcen them.

2.2.3. Multiaxial load

Address the stability of a plate under axial compression and shear (Tx ¢: 0, Txy :x 0).

Make usc of the earlier obtained values of the critical stress resultant of compression, T*,,0, and

shear, T*xy0, (for the cases of the loads being applied separately) and establish depcndence

bctween Tx and Txy at instant of buckling. Assume that T,, is varied in proportion to the critical

compression stress resultant T'x0: Tx=WT*,,0. Matrix [M] elements will be of form

-- * 2
M dd = m2n2kmn - _ k xo(m + fxn2a2fo 2) ;

M dI

(d_I)

32a k mnij for m+i = 1,3,5,...,n+j = 1,3,5,...;

for m + i = 2,4,6,...,n + j = 2,4,6,...

Transform the matrix [ M ] by analogy with transformations carried out for the problem

on stability under shear.

From the set of simultaneous equations of (2.12) typc, by using the technique described

in 2.2.2 and specifying a series of values of W, one can establish the function k*xy=f(Wk*x0).

Figure 2.6 shows examples of the relations for

Z Part 1. Postbuckline behavior ofcomaosite aaneis 12



- the CFRP plate above ((a/b=l, q)=+45°)) with free edges (,) and

- a plate with longitudinal edges not moving laterally (+).

Curves in Fig. 2.6 correspond to the equation

Tx
+

Txo '.Txy01

= 1 (2.13)

From this Figure it follows that the results can well be described by formula (2.13); the

latter allows analysts to use the values of critical stress resultants T'x0 and T*xy0 to determine

the stress resultants Tx and Txy at which the plate buckles.

2.3. Postbuckling behavior of plates

Let us make use of the previous section's natural modes to approximatcly determine

postbuckling out-of-plane displacement of a plate. Express the buckling out-of-plane

displacement Wo in the form of a product of an unknown amplitude Ao and a natural mode w :

Wo = AoW = AoY" y'qmn sin_,mX sin 9Vny.
m n

(2.14)

Let us assume that, under the proportionally increasing loads [TxTyTxy]T->[T*xT*yT*xy] T

(not far in excess of the critical stress resultants) the plate out-of-plane displacement shape is

similar to the natural mode w corresponding to the minimum eigcnvalue. The subsequent

loading can change the out-of-plane displacement - a jump to the shape corresponding to the

second eigenvalue etc. From the first two differential equations of equilibrium (2.5), taking into

account (2.14), we write mid-surface displacements

R

u=C'x+C2y+A° Z Z qmn(qmn u, + 2 Z Eqij u2)

16 m n i j

v=C3x+C4y+ A°2 - -
16 _--_Y"qmn(qmnVx + 2ZZqijv,,)

m n i j

(2.15)

Here

-u, = -_m (1 _'n_'2BI21 sin2_'mX + _'mrlsin2_'mXC°S2_VnY'BllJ

g"
_2

v, =-Z.n|l BI2| sin2ZnY + )_nrl I cos29VmXSin2_,ny,
\

2. Part 1. Postbuckline behavior of composite panels 13



U 2 = _'m [r3 sin(kin - ki)x cos(_, n - _,j)y + r5 sin(k m + _-i)x cos(_, n + _j)y +

+ r 7 sin(_, m - _i)x cos(_, n + _j)y + r9 sin(_ m + _.i)x cos(_, n - _j)y] ,

V2 = _,n[rl3 COS(_,m - _'i) x sin(_'n - )_j)Y + q5 c°s(_'m + _'i )x sin(_ + _j)y +

+ q7 c°s(_'m - _i) x sin(kn + _j)Y + q9 c°s(_'m + )_i) x sin(_'n - _'j)Y]

m, n, i, and j are numbers of half-waves (m _ i, n ¢ j);

rl,r3,r5,r7,r9,rll,rl3,rl5,rl7,rl9 - are coefficients to be evaluated

linear algebraic equations

[L]{r}={B},

in pairs from systems of

where [L] is a 2x2 (square) matrix, {B} is the fight-hand side column.

For an orthotropic plate we have rl=rl_=l, and the matrix [L] and the vector {B} for

determining coefficients [r3r13] T, [rsrls] T, [rTrlT] T, [r9rM T are of form

[Bllt_+B33t_ (B|2+B33)tlt21[L] = (BI2 + B33)tlt2 B33tl2 + B22t _ j ,

= _'(BI 1_,i51 + B12_.n_,j62 ] _,m)tl + 2B33_,jt252

{B} [2B33_,jt152 +(BI2_,i82 + B22_,n_,j8 t/_,m)t 2 ,

where thc values t.t2, 51, 52 should be

t l = _-m - _i,

tl = _m + _i,

tl = _m - _i,

tl = _m + _i,

t2 = _n - _j,

t2 = _-n + _j ,

tz = Z.n + Z.j ,

t2 = _.n - _.j ,

51----52 = I;

51 ----52 "- -i;

5_ = -I, /52 = I;

51 = I, 52 =-I .

The constants CI,C2,C3,C,_ for (2.15) are determined from the integral boundary

conditions over the plate contour. In the case of a plate with freely moving longitudinal edges

these conditions are

b a

INxdY = -Txb npn x = 0,a; INydx = -Tya npH y = 0,b;

0 0

I Nxydx = -Txya npH y = 0,b .

(2.16)

For a plate with fixed longitudinal edges the boundary conditions are written as
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b

I Nxdy = -Txb

0

npH x = 0,a: Av = v(y = b) - v(y = 0) = 0 ;

I Nxydx = -Txya npH y = 0,b

(2.17)

We should determine stress resultants Nx, Ny, Nxy by means of equations (2.3), (2.4),

(2.14), and (2.15) and substitute these into the boundary conditions (2.16) or (2.17). Proceeding

in this way, find

= - A0 _-" _--_qnu,(TVm + = ,Cl _131Tx +132Ty 2 2 2 136_21)/S, C2 +C 3 _13sTxy
m n

c4 -132Tx-133TyA02Z 2 2= - _--'qrm1137_n/8 .

in n

If the edges of a plate can displace freely, then

131=Bzz/B, 132=BJB, 133=B11/B, 136=0, 137=1, 138=1/B33, B=BllB22-B_'12.

If it is not the case, then 131=l/Bll, 132= 133 = 137= 0, 136= Blz/Bll, 138=1/B33.

Having fixed A0 the out-of-plane displacement (2.14) and displacements (2.15) are

employed to find deformations, stress resultants, and moments in the plate after buckling:

_:x0 : -131Tx + 132Ty + A2_x/8 , _:y0 = -133Ty +132Tx + A2_y/8 ,

Yxy0 = -_38Txy + A2yxy ]8 ;

N x =-T× +Ao2(BII_;X +B12_y)18 ,

Nxy

M X

My

M xy

(2.18)

/X

Ny =-Ty +A2(BI2_X + B22_y)/8 ,
(2.19)

2 -
= -Txy +AoB337xy/8 ;

= A0_-"_qnm(Dil_,_n + Dl2_2n)sin_in x sin_my ,

m !1

= A0_--_--'qnm(Dl2 _2 + D22_,2)sin_m x sin_.ny , (2.20)

in n

= -2A0_--_-'_,qrmlD33_'m _'n c°S)VmX c°s_'nY •
m n

Here, the following notation is introduced:

{_;x ZZ2= qmn (_136_n2 + BI 2_.n cos 2_.mx/B112 _ X2mcos 2_n y) +
In n

+qmn_'m_-"_--_qijXi[ ft c°s(_'m -Li)x e°S(kn -_'j)Y +f3c°s(_'m +_'i) x c°S(kn
i j

+fsCOS( .m- ,i)x COS(_n +_j)Y+fTCOS(_,m +_,i)X COS(;Ln-_j)y ] },

+ kj)y +
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_Y =ZZ{ q_n[ (I-_7)_'2n +B12_2mCOS2_nY/n22 -_2ncOs2_mx) ]+
m n

+qmn_,n _-'.qij;kj[fll COS(kin - _'i) x COS(kn - _'j)Y + t"13COS(_m + _i) X COS(_n

i j

+fl5COS(_,m-Zi)X COS(_ n +_j)y+fl7cos(_.m+_i)X COS(_n-_-j)y ] } ,

+ _j)y +

Yxy =-ZZ qmn_n)--_qiJ_'J[ f22sin(_'m -Li)x sin(_'n -kJ )y+f24sin(xm + xi)x sin(_'n
m n i j

+f26 sin(_'m - _'i) x sin(Xn + _'j)Y + f28 sin(_'m + _i) x sin(_'n - Z,j)y ] ,

/x (" Ty

Ty= t

_. TxBtJBll

for plate with freely moving edges,

for plate with fixed longitudinal edges.

Coefficients fl,f3 ..... f2s of series for strains ex, 13y, Yxy are:

fl= l+r3( _m- _i)/ _i , fl_= 1+r13 _m(_n - _j)l(_,n _j) ,

f3=-l+rs(km+_i)/ _i , fl3=-l+rl5 _m(kn + _j)/(Xn _j) ,

fs=-l+r7(_.m - _)/ _i , f15= l+r17 _m(_,n + _*j)/(_,n _,j) ,

fT= l+r9(_m+ _)/_i , f17=-l+r19 %m(_,n " _.j)/(_.n JLj) ,

f22- r3(_,n- _,j)/ _,j+rl3_m(_ra - _i)/J_j+2 ,

f24= rs(_,n+ _,j)/_j+rl5_,m(_m + _i)/_,j-2 .

f26 = rv(_,n- _,j)/ _,j+rl7_,m(_m - _.i)/_,j+2 ,

f28 = r9(_,n- _,j)/ _,j+rl9_,m(_,m + _i)/_-j-2 •

Relations (2.14) and (2.19) do not make it possible to accurately satisfy the third

equilibrium equation (2.6). To construct an approximate solution, make use of the energy

functional (2.7). Substitute in (2.7) the mid-surface displacements (2.14) and (2.15) to obtain

after integration:

ab

+ - + +

+ A°2 bl9_2a (-- - Txy°t xY)+ A4 1I0--Z-;- N- TxOt x - Ty_ty 28 '

(2.21)

Here

_2

-_-4D" Dz2 Z 2 z 2= _--'qmn m n kmn ,
m n

(ab---_ n_-_l _mnn2°ix = _-_]q2n m2 +Ix , G_y= ZZq
m n m n

Z Part 1. Postbuckline behavior of composite panels 16



= 3_2_2bZ ZqmnmnZ Zq_,rl _,rl
_xy /1_2 a m n _ n (m2 -_2)(n2 - r12)

I0 = Bile x +2B12gx13y +B22gy +B33Yxy dxdy .

O0

m +_-_ = i,3,5 .....

n+_rl=l,3,5 .... ;

Let us use the minimum total potential energy principle: minimize the functional (2.21)

as a function of A0. This provides A0=f(Tx,Ty,Txy) for the postbuckling out-of-plane

displacement:

A0 _rc2a (N- Txc_x- Ty_y-TxyO_xy\ +A 2 8x2a---_)bI0 ]=0 ,
(2.22)

Hence

A_) •= 0 , Ag 2'3) = +2x_/2a(Tx_ x + Tyczy + TxyCtxy - _,1) / (bI0)

Equation (2.22) has three roots; the first of them (A0 m) corresponds to plate deformation

without bending; and the other two roots, to a plate deformation with out-of-plane displacement.

From (2.22) it follows that if the stress resultants are less than critical (i.e., if Tx Cxx+Ty Oty+Txy

C_xy< N ) then roots A0 (2'3) are imaginary, and the plate can have a flat equilibrium shape only.

If stress resultants exceed critical values (i.e., if Tx Ctx+Ty O_y+Txy (Xxy > N ) then roots Ao (2'3)

are real and non-zero, which means that the plate can show a bending equilibrium shape.

Relations (2.18) - (2.20) should be complemented with a procedure describing

changeover of the buckling shapes. To achieve this, transform the energy functional (2.21)

taking into account formulas (2.22) for the out-of-plane displacement amplitude A0:

ab,.v2n T2133 2TxTyl32 + T2y138) 210b2Do = --_-_ lxpl +

x4a 2
(Txc_ x + Tyoty + TxycXxy - _)2. (2.23)

Let us analyze variation of D0 for three likely postbuckling

corrcsponds to a flat plate and is associated with energy Do(°):

9_ 0) ab,-v2n Ty2l_3 2TxTy132+T2y138)
=--Tl, ixPl + --

states. The first state

The second state corresponds to a bending equilibrium shape similar to the first natural

-*mode w and has the associated energy D )

x4a 2 , •

DO) _ ab2_(Tx[312+ T2133 - 2TxTy_32 + Tx2y138) 210 b2 (Txct x + TyOty + Txyotxy - N* )2.
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The third state corresponds to a bending equilibrium shape similar to the second natural

mode w (2) and has the associated energy ,_2)

- _ T" x4a2 (Txct.?) + T,,o_ (2) + T _(2) _ _(2))2
_o2) ab (T2131 + Vyl33 _ 2TxTyl32 + g,138) 2I(o2)b2 ._ y., , - xyt_ x-/

Figure 2.7 shows the variation of energy of every state in the course of proportional

loading with generalized stress resultants {T}T=T[TxT'yTxy] T. The real postbuckling equilibrium

shape depends on a loading level T. At an initial stage of loading, when T <_T* (T* is the first

eigenvalue), the equation (2.22) produces the result A0=0; consequently, the plate remains flat.

In further loading, when T > T*, two equilibrium modes are possible: planar and curved, with a

surface shape similar to the first natural mode. We can assume that the plate takes the

equilibrium mode which corresponds to minimum generalized stress resultant and a minimum

total potential energy. If T > T* the real equilibrium mode is the one with a surface shape

similar to the first natural mode. At the bifurcation point, the total potential energies of two

equilibrium states, :90(°) and _)0(_), must satisfy the condition 90(°)=_)0(_); from this the following

equality appears:

Txczx +Tyo_; +Tvy(X_y-N =0.

It allows us to find the value T* and the stress resultant {T×TyTxy} T at which the

equilibrium shape changes over. Of course, the first of such change-overs occurs at a force equal

to the critical value. Determine the real equilibrium mode in the postbuckling stage at stress

resultants T>>T*. We shall compare now the energy levels of the plate with

- the shape of the surface similar to the first natural mode and

- the shape of the surface similar to the second natural mode,

i.e., :9o(_) and :90(2). Refer to Fig. 2.7. The first equilibrium mode has energy :9o°) (TI)

(line 2), and the second has energy :90(2) (T2) (line 3). If the accumulated energy levels are

identical _0(t)=_)0 _2) and the load level TbT2<Ts then the first equilibrium mode takes place,

whereas the second one appears at TbT2>Ts. The value Ts can be called the stress resultant of

secondary bifurcation. Use the condition :90_) =:90 _2) to determine the value Ts. After simple

transformations we obtain the following equation:

TxY x +Tyyy +TxyYxy = N __(2) /I ) ,

where

* _ * _2 ,_ _02 (2) eq-_lI(0Z)yx =C/.x -O_(x 2) [I_ 2) , yy =Ry -Ct ) /I ) , Yxy =(_:y-(_xy

With the relation between stress resultants Tx,Ty,Txy known, it is an easy task to evaluate

each of them. If a plate is rather thin and a load level T>Ts does not cause failure, a further
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changc of the plate surface shape in the postbuckling stagc is possiblc. To dctcrminc a lcvcl oi"

the next bifurcation, one must compare total potcntial cncrgies :9(2)0 and _)(3_0etc.

With thc equilibrium shape known, we may dctcrmine the out-of-planc displaccmcnt

amplitude (2.22) and plate state characteristics (2.19) and (2.20) lbr cach point. Use mid-surfacc

strains (2.3) to find strains of every layer, (2.2), and laycr stresses (oh, _2, zt2) rcfcrred to layer

orthotropy axes:

_1 = El[ (_;x0 + ZXx)( cOs2 _ + I-1.12sin2 qg)+ (ey 0 + ZXy)(sin 2 q_+ j.tl2 cos 2 _0)+

+(YxyO + ZXxy)(l- gl2)sinq ) cosq_ ] ,

a2 = E2[ (ex0 + ZZx)(sin 2 q_+ J-t21cos 2 q_) + (eyO + ZXy)(COS 2 (p+ J-t21 sin 2 q_) -

-(Txy0 + ZXxy)( 1- I-t21)sinq _ cosq_ ] ,

"q2 = Gl2[(eyO - exO + ZXy - ZXx)sin2q) +(YxyO + ZXxy)C°S2q _] ,

where

Xx =AoZZqmnX2mSinXm x sinXny, E1- E1

m n 1- _t12921

Zy =Ao_--]_-]qmn;_nSin_.m x sin_.ny, E2- E2
m n I-1"1"121-1'21

E2
Xxy = -2A0_]_-]qmn_-m)_nCOS_,mX cOS_ny , la12 = la21 --

m n El

El, E2, G12, t-t21 are conventional elastic characteristics of a layer. The stresses in every

elementary layer should be compared with fracture stresses Crl,_2,'_]2 to determine the plate

limiting state after buckling.

Let us study the postbuckling behavior and load-carrying capability of composite plates

for particular cases of compression, shear, and multiaxial load.

2.3.1. Compression

For this type of loadings (when Txy = 0 ) the natural mode is of form

w = sin(mrcx /a)sin(nrty / b)

and relations (2.15), (2.18) - (2.20), (2.22) and (2.23) become significantly simpler.

A postbuckling out-of-plane displaccment is describcd by the equation
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w=A0sin_,mX sin_,.y .

For a plate with freely moving edges we have the following relations:

- mid-surface displacements

= - A0K m -i-_p,,'-m - B12_1 / . ,, -m'sin2 rnX_ mSin2 ,n,.COS  ,,y1U

(2.25)

v = - A0137?_n - -i-fit(_132T x 2 2/8)y A2 [(_,2 _ gl2K]n / B22)_,nl sin 2KnY _ _,n cos 2KmX sin 2_,ny]

-the strains

_x0 = -[3tTx + A0(BI2K]a c°S2_mX/BII - _2 cos2_,ny ) [8 ,

_;y0 = -132Tx + Ao(B12 2Km2cos 2KnY / B22 - _,2n cos 2_,mX) / 8 ,

- stress resultants

NK = _T x _ A2B (8B22)-I _2 coS2KnY ,

Ny =-A2B (8Bil)-lK2nCOS2Lm x , Nxy =0;

Yxy0 =0 ;

(2.26)

(2.27)

- moments

Mx =A0(DIIK2m +Dl2_,2n)SinKm x sinKnY,

My=A0(DI2K2+D22_,2n)SinKm x sin_nY , Mxy=-2AoD33Km_nC°SKm x c°SKny "

Layer stresses could be determined using the following formulas:

rs I =_E1Tx [ [_t(COS 2 q_+.12sin 2 q0)-]32(sin 2 (D+_,2COS 2 q0)]+

+EIA2I(BI2;K2n cos 2KmX / BI I - K2 cos 2Kny) (C°s2 q_+ btl2 sin2 q_)+

+(Bl2 _2 cos2Kny/B22-L2n cos2_,m x) (sin2 _ + _q2 cos 2 q_) ]/8+

+AozEI {[Kin (cos 2 q)+ I-t12sin 2 _)+ K2(sin2 _ + P.12 cos2 q_)]sin _,mX sin _,ny -

-2_,m_n(I- t,tl2)sinq_cosq0cOSkmXCOS_,ny } '

) ]rs2 =-E2Tx I sin q_+l.t21cos 2qo -132(cos 2q_+l.t21sin 2q_) +
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V.

+EzA 8 B12_, n cos 2_,rnX / Bll - )_n cos 2_,ny (sin 2 q_+ t,tzl cos 2 q_) +)
L"

 o 2 mX)(co '+ 1,8+
{[ " 1+AozE2 _'2m(sin2 _ + g21 c°s2 g_) + )%(cos- q_+ I.t21 sin 2 g_) sin _.m x

COSq) COS_LmX COS_.ny / •+2_m_.n(1 - la21) sin q)
)

(2.28)

sin _,nY +

{ 2[2 B12 )cos 2_.ny"t12 =Gl2 Tx(131 +132)sin2q_+A0 _,m(l+
1522

8 (l+B12/Bll)cos2_ mx sin2_+A0z()_2 __.2 n)sin2_

--2_.m_..COS2_ COS_mX COS_.ny] } .

sin X,mX sin _,.y -

The plate out-of-plane displacement amplitude is of form

7L21 x Tmn E2mBll _.2nB22) '
(2.29)

where Tmn = _,2n4DllD22 kmn . The total potential energy of the compression loaded

plate can bc presented as follows:

9 0 -

(
ab B_

T 2 J31 -- ab(T× - Tm.)2/•
2 _.B22

-1

(2.30)

Complement the relations (2.25) - (2.30) with a procedure for searching the real

equilibrium mode in postbuckling stage of loading. The total potential energy of compression of

a flat plate is D_0°) = -Y x 13tab / 2 .

The total potential energy of compression of a curved plate with a surface shape similar

to the first and second natural modes will be of form

D(ol) _ ab 2 )2( B
2 Tx _1 -- ab(Tx - T2 (,B_:

(

:9(02) ab ,, / -= -_-Tx [31 - ab(T× - T_2)) 2 B

1322

n4 a4 B

(m 0 + 1)b 4 Bll

-1
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and so on. At the initial stage of loadings, when Tx<T*x a plane state of cquilibrium is

implemented, and the plate total potential energy is a function on D¢°)0. With a load level Tx>T*x

two equilibrium modes are likely: a planar mode and a curved mode with a surface shape

similar to the first natural mode. To identify the real equilibrium mode, compare compressive

stress resultants at identical levels of energy accumulation (De°)0 = D{L)0), i.e.,

( BI1ab -, abT? 131-ab(T 1-T x)2 B _4 0
2 TG [31 - 2 B2 2 4 B1- "

m0 1

The equality holds if To >T_. Let us assume that the real equilibrium mode is the one

which corresponds to lower stress resultants. Consequently, at T,,>T*x the plate takes the

equilibrium mode whose surface shape is similar to the first natural mode. Study now the plate

equilibrium mode for stress resultants T×>>T*x; total potential energies 9_)0 and 9_2)o should be

compared. For identical levels of accumulated energy (:9¢1)0 = D<2)0) compare the stress resultants

Tt and T2; for this purpose we write the equation:

( t-1ab , • =
2 T( 131-ab(y 1-y x)2 B _,40 B

[,B22 4_'mO Bll

f

ab T_ [31 - ab(T 2 - Tx¢2))2/ B no4 a 4 B

2 " _,B22 (m o + 1)4b 4 BI1

-1

After simple transformations we can establish the load level Ts at which 79_)o = 2)_2)oand

Tt = Tz. It is from the relation

Ts = (T*x - Tx (2) Is) / (1 - fs) ,

where f_ =
B n4a4 B ]-1B22 (m0 + 1)4b 4 Bll

The stress resultant Ts is the secondary bifurcation stress resultant. If T*x<Tx<Ts the

plate is in the equilibrium mode with the surface shape similar to the first natural mode (since

T1<T2 ), whereas if Tx>Ts then the plate is in the equilibrium mode with the surface shape

similar to the second natural mode (TI>Tz in this case).

To exemplify determination of secondary bifurcation stress resultants, a plate may be

considered whose stiffnesses and geometric characteristics are given in [19]. For such a plate the

above procedure for identifying secondary bifurcation points gives Ts= 3.08T*x. In [19], a finite

difference technique is employed to find the stress resultant Ts= 3.28T*. A difference between

the results is 6.5%.

For a plate with fixed longitudinal edges we have the following relations describing the

displacements, strains, stress resultants, and stresses:
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2

v = -AS_37_,ny / 8 - (_'n - B12Xm / B22)_'n 1 sin 2_,ny - _'n cos 2_,mX sin 2Xny ;

2 2
exO : -131T x + AO(-_,nB12 / BI1 + B12k2n cos 2_mX / Bll - _,2m cos 2_.ny) / 8 ,

ey 0 : A2(_,2 n + B,2_, 2 cos 2_,ny / B22 - k2n COS2_,mX) / 8 , y xy0 = 0 .]

Nx : _T x _ A2B(8B22)-1X_n cos 2XnY ,

.. O ONy -TxBI2 / Bll - ASB(8Bll)-tk]'a cos2?_mX N --0 •
' xy

-- -- O[ '3 "3crI -EITx(cOs 2---- q) + _'12 sin2 q)) / Bll + E1Ao exo(C°S" q) + _tl2 sin q)) +

+eyo(Sin 2q_+ktl2cos 2q)) ]/8+

+AozE1 _._(cos 2 qo+ gl2 sin2 g_) + )_n( sin" g_+ g12 cOs2 _) sin )_mXSin _'nY -

-2_m)_n(l - gl2)sin_c°sg_c°S_'mXC°S)_nY / ,
/

cr 2 =-E2Tx(cOs 2 q)+ t.t21 sin 2 qg)/Bll + EeAg[_xo(Sin 2 q)+ la21 cos 2 q_)+

+Syo(COS 2q)+kt21sin 2(p) ]/8+

1+AozE2 Xm(Sin- q) + I.t21 cos' q)) + X2(cos - q_+ _21 sine q)) sin _,m x sin kny +

+2_,m_n(1 - I.t21)sinq_ cosq) coS_,mX COS_,ny } ,

_12 "O12{ Tx sin2tp/Bll +A2[ _'2(1+ Bl2)+g_( 1+ BlZ)c°S2_nY -
8 t Bll B22

-_,2n(1 + B12)cos2_,mXlSin2(p+BI1 AoZ [(_2n - _.2m)Sin 2q) sin_mX sin_,ny-

-2_,m_, n cos 2q_ coS_,m x cos _'nY ] t •
i /

The amplitude of out-of-plane displacements of such plate is defined by the equation:

2,6IIA0 =_- T x 1 + B,2Wmn]I+ BI
BI 1 _2 m _,2 B11 _'n B22

-1

Z Part 1. Postbuckling behavior ofcomposite panels 23



Compare theoretical results with test data from [20] dealing with postbuckling behavior

of homogeneous orthotropic plates with the freely moving edges. Experimental plates had the

following characteristics:

plate NI:

plate N2:

h=2.506.10 -3 m, B/hB22=Ex=28.06 GPa,

B/hBll=Ey=5.3 GPa, B33/h=Gxy=2.15 GPa, B12/B22=_tyx=0.33"

Ex=27.38 GPa, Ey=8.06 GPa, Gxy=2.71 GPa, layx=0.33.

The dotted line in Fig. 2.8 shows the "relative load - relative displacement of loaded

edges" relation based on (2.25) for the first plate. Points are from experiments. Figure 2.9

provides stress distribution _x = Nx/h across the width of the plate N2, as found from (2.27)

(dotted line). Points here also show test data. From these plots it follows that the solution

satisfactorily describes behavior of buckled composite plates and may be used to estimate their

load-carrying capability.

Address a CFRP plate with thickness h=l.l.lO 3 m, dimensions a=b=0.4 m and the

following mechanical characteristics of a layer: E1=180 Gpa, E2=6.2 GPa, Glz=5.0 GPa,

_21=0.26, _1=(+1000, -450) MPa, _2=(+33, -100) MPa, "t12=27 MPa. Determine limit loads

for various versions of reinforcement. The results of computation based on the Tsai criterion

from [14] are depicted in Fig. 2.10; here, the solid line is for the plate with freely moving

edges, whereas the dotted line, for the plate whose longitudinal edges do not displace

transversely. From Fig. 2.10 it follows that the maximum load-bearing capability is ensured by

plates with longitudinal stacking. When determining Tx, account was taken of the change in the

number of longitudinal half-waves in the course of loading. The load-carrying capacity of the

plate with fixed longitudinal edges is slightly higher than that of the plate with free edges.

Compare critical stress resultants T*x with ultimate stress resultants Tx.

m

We have: Tx/T*x =104.3 (109.1) at q_ = 0 °,

Tx/T*x =9.29 (16.4) at q_ = +45 °.

The results between the brackets are for a plate with longitudinal edges not moving

laterally. These results evidence that a buckled composite plate is ablc to carry considerable

loads.

Traditionally, thc load-carrying capability of a stiffened thin-walled panel with a buckled

skin under compression is estimated by means of the reduction coefficient defined as the ratio of
b

a mean compressive stress resultant Ns = -j'NxdY/b to a stress resultant Np at the
0

longitudinal edge of the skin: q_z = Ns / Np. Determination of reduction coefficients for metal

uniaxially stiffened panels is dealt with in a large number of works, for example [1 - 5]. When

analyzing aircraft structures, use is widely made of the notorious equation by von Karman [3]:

J._E = Tx ! Np

Let us employ the relation (2.27) for stress resultants in order to establish the reduction

coefficient for compression loaded composite panels. We have
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1 + Bz2(na/rob) 4/Bt_ T x
(DE = +--

Np3 + B22(na / mb) 4 / BII

Np = -Tx - A2o _,2m B/(8B22).

3 + B22(na / mb) 4 / Bll

(2.31)

The monograph [1] by A.S.Vol'mir presents experimental values of the reduction

coefficients for traditional materials. These are shown by points in Fig. 2.11. The solid line

shows the theoretical relation for q_E at a/b = 1, taking into account changes in the skin buckling

shape. One may see satisfactory coincidence of the results for metal panels at Np / T*x <- 12 + 16.

However, application of the traditional reduction coefficient method to evaluation of load-

carrying capabilities of composite panels is not always justified. As is generally known, it

assumes that (1) a skin area with the width bpr = q_zb is reduced to a stringer and (2) the likely

final condition of the panels is reached as a result of general or local buckling of the stringer or

its failure under compression. In this case, in accordance with the experience available, the skin

is normally assumed not to fail. Some composites (in particular, carbon fiber reinforced plastics

most widely utilized in thin-walled airframes) feature the brittle fracture at strains of 0.5 - 1.0%.

This implies the compression loaded composite panels becoming broken, as a rule, due to skin

failure from compression and bending that follows buckling. This is just the failure mode of the

plate in the example above. That issue is studied in more detail in 2.4 below.

2.3.2. Shear

Consider postbuckling behavior of an orthotropic plate under shear. In this case the

postbuckling out-of-plane displacement is governed by the general equation (2.14), whereas

formulas (2.15) - (2.24) remained unchanged, taking into account that Tx = Ty = 0,

C2=C3=_38Tyx / 2.

The out-of-plane displacement amplitude is

A o = 2rc_/2a(Txyotx.y - N)/(bIo) (2.32)

Stresses in layers are:

A0 [-
o 1 = El {-Txy 138(1 - la12) sin q_ cos q) +--8-t 8x(COS2 q) + 1"1"12sin2 q)) +

+_y(sin2q_ + tal2COS 2 q_)+ _xy(l_ t,h2)sin _ cos_ ] }+

+AoZEl_--_--_ qmn{[ _,2(c°s2q_+_lzsin2q_)+k2n(sin2q_+
nl n

%t12 cos 2 q)) ]sinXmX sin_,ny- 2_,m_,n(1- I,tl2)sinq_ cosq) coS_,mX
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_2 =E2{Txy[38(1-I.t2,)sin_ cosqa+A°2[ _x(sin2qa+bt2, cos2q_)+
8 t

+_y(eOs 2 q_ + !t.t21sin 2 qP) - Yxy(l - bt21)sin _ cos_ ] +

+AozE2_-_._-" _ qrrm[_.2m(Sin 2 q_+ la21 COS2 q_)+ _.2(COS2 q_+
in n

+_21 sin2 q_) ]sin _.inx sin )'.nY + 2_'mkn(1 - la21) sin tp cos qa cos XmX

A2 _"tl2 =G,2 -T_,138cos2¢a+-_-[(ey -_x)sin2q_+Yxycos2q_ ]

,_ ,_ . ,.)+A0z_-_qmn (_'n - k_u)sm"q_ sin_'mX sin_'nY-
in n

--2_nl_'nCOS2_COS_'nlXCOS_ny ] } •

(2.33)

Values ex, ey, Yxy' N, O_xy and I0 have been defined earlier.

Address the stress state and load-carrying capacity of various commonly used plates out
* O

of CFRP under identical loads Txy =I 1.5 kN/m (Txy = 2T xy(+45 )). The plates with dimensions

a=b=0.4 m and thickness h=l.3_10 3 m had the following layups: q_ = 0 ° (plate 1), +_30° (plate

2), +45 ° (plate 3), +60 ° (plate 4), and 90°(plate 5). Figures 2.12 - 2.16 show distributions of

stress resultants (Nx, Ny, Nxy), moments (Mx, My, Mxy) and stresses (Ol, _2, "tl2) over the

section x = x/a =0.5 of every plate. Stresses are presented for the layer whose mid-surface

coincides with the plate mid-surface. Identification numbers of lines are identical to numbers of

the plates, i.e., the line 1 is for the plate with the longitudinal stacking (q_ = 0 °) etc.

Of interest is dependence of the out-of-plane displacement amplitude on the applied load

for differing layups. Figure 2.17 providcs a plot of the "relative stress resultant (Txyfr*xy) -

relative out-of-plane displacement (w/h)" relation for plates 1, 2, and 3. The load-carrying

capability of plates after buckling under shear substantially depends on layups and geometries.

Figure 2.18 shows Txy (+tp) for three plates with the aspect ratio a/b=l, 2, 3. In the case of the

square plate the maximum load-carrying capability under shear is ensured by a plate with fiber

orientation angles g_ = +45°; in the case of the plate with the aspect ratio a/b=2, the plate with

angles q_ = +63°; in the ca'se of the plate with the aspect ratio a/b=3, the plate with angles

,,p = +67 °. As well as under compression, composite plates after buckling under shear are

capable of carrying the load. Employing this property in thin-walled structures of flight vehicles

will make it possible to increase the effectiveness of composites. For the above plates the ratio

of ultimate critical stress resultants Txy / T*xy is (at q_ = +45°):

12.1 for the square plate;

10.5 for the plate with the aspect ratio a/b = 2;

- 5.2 for the plate with the aspect ratio a/b = 3.

It is usual that load-carrying capabilities of stiffened metal skin panels and spar webs

under shear are estimated by using the theory of complete and partial diagonal tension fields

[6,9]. Applicability of such an approach to composite structures was studied experimentally and
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theoretically by determining the load-carrying capability of a traditional thin-walled beam with

(1) steel flanges and battens and (2) the web out of CFRP with fiber orientation angles +45 °. A

buckling mode shape of the web subjected to a shear load Q is shown in Fig. 2.4: it well

conforms to the first natural mode obtained by computation. Here, the failure mode of the web

in the postbuckling stage is also shown.

The panel was analyzed by means of the diagonal field theory. In this case the measured

slope of the wave, ot=43 °, in the final condition was in a good agreement with the theoretical

value, c_=43.3 °. Initiation of several parallel waves at plate corners was also obscrvcd. However,

failure of the web was not in correspondence with the model used in the diagonal field theory:

failure from tension along the line 1-2 in Fig. 2.4 was preceded by advent of cracks along the

line 0-2 in the vicinity of the point 2. This crack is caused by web bending along the hump of

the wave due to buckling. Thus, the load-carrying capability of a thin-walled beam with a web

out of a brittle composite (a typical example of which is the carbon fiber rcinforccd plastic)

cannot bc predicted on the basis of the diagonal field theory. More detailed information on web

stress state in the postbuckling stage is required; it cannot be derived from this theory.

2.3.3. Multiaxial load

Assume that a composite platc is buckled undcr axial (Tx) and shear (Txy) stress

resultants. The plate stress-strain state is defined by relations (2.14) - (2.20), whereas the "stress

resultant - out-of-plane displacement amplitude" relation may be established with the help of

equation (2.22). Consider the loading model in which the stress resultants Tx and Txy are varied

in proportion to one parameter. Determine the load-carrying capability of a square plate out of

CFRP loaded with identical stress resultants Tx and Txy (Tx:Txy=l:l). Fibres arc laid at anglcs of

+45 °. The computation predicts the breaking stress resultants Tx=Txy=l 1.5 kN/m. Figure 2.19

shows stress distributions (_1, cr2, zt2) in three sections with relativc coordinatcs x =(0; 0.25;

0.5). Change the relation bctween strcss resultants Tx and Txy and generate the plate strength

surfacc for the multiaxial load. Figure 2.20(a) represents such a surfacc for the square CFRP

plate with angles q_ = _+45°. Figure 2.20(b) shows the samc surface in relative coordinates

(Tx/Tx0, Txy/Txy0), whcre Tx0, Txy0 are breaking stress resultants for isolated action of

axial compression and shear, respectively. Points are from computation, and lines arc

approximations thereof by means of the relation

f_ xyl Tx
--=-- + =i .
Tx0 \Txy0 j

(2.34)

Comparison of the results shows that the load-carrying capability of orthotropic

composite plates under multiaxial load may in many instances be estimated via the simplified

equation (2.34).
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2.4. Stiffness and strength of panel with buckled skin

For analysis of postbuckling composite skin deformation, let us consider the behavior of

rectangular plate stiffened by mutually perpendicular ribs, Fig.2.1.

Each typical part of plate with adjoining parts of ribs in biaxial compression and shear

behave similar to the others retaining the rectilinearity of ribs and edges x =0, x=a, y=O, y=b

of plate cell. Prior to buckling, the uniform flat stress state is realized in the plate with average

stresses px=Tx/h, py=Ty/h, _'=S/h. After buckling, the plate get the deflection w(x,y); the

distribution of membrane forces balancing external loads T,,, Ty, S becomes nonuniform. Let

us consider that the ribs are simply supported; the plate is orthotropic with symmetrical layup

arrangement. Postbuckling plate behavior is described by nonlinear differential equations ofvon

Karman type

LI(@ ) +l L3(w,w) : O, L2(w)-L3(@,w) : 0, (2.35)

where • is force function,

a4 O4
L 1=A22_--_- +2,43

OX 4 OX20y 2 +All 0y 4' A3=AI2+A33 ]2'

L2=DllY___+2D3 04
Ox" ax20y 2

O4

_+Dz2 0y 4 , D3=DI2 +2D33,

L3 02 02 02 02 02 02 [al=[ao]:[B]_
Ox2 ay2 _ #--i ax--_ axOyaxOy'

02'I' ux, 02-_¢:u,,02-_¢:u_,, {%}:ta]w}.
Oy2 Ox2 OxOy

(2.36)

Plate midsurface strains are coupled with its displacements u(x,y), v(x,y), and deflection w(x,y)

by relationships (2.3), so that for relative mutual displacements of plate cell edges the following

is valid:

a a

l(Ou , lr
e x .... aX= ---J

aSo C3X a o
b b

_ 1(_, If

A 02@ 02@ 1 (Owl2]dx

_1--_+A1_Ox2 _ _ :J :co,_t ,

I]A,202@+A2202@ l(Ow 2 ,, oy_ Ox_ _ -_ ay=Conz.

(2.37)

We will give the approximate solution of the problem by using the assumption that the

postbuckling deflection pattern is close to that for buckling pattern and by solving the latter

from the equations (2.35) using Bubnov-Galerkin's method.
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2.4.1. Biaxial compression

In this case we shall follow the solution scheme proposed by K. Marquerre [5] in application

to metal plates. According to (2.37), we consider the relative mutual displacements ex, ey as

given ones (by defining the absolute displacements of edges). The plate deflection we represent

as

w(x,y) =f0sin mnXsinnn----_Y m,n = 1,2,3 .... , (2.38)
a b '

that corresponds to all possible buckling modes of simply supported plate

02w Ix=0.b=0. (2.30)
°2wax #---5

Boundary conditions (2.39) are satisfied only in postbuckling phase of deforming at any

amplitude of deflectionf 0. Substituting equation (2.38) into first equation (2.35), the solution

of the latter can be expressed as

2 2 32 / b2m2A22 a aZn2All b

(2.40)

Hence the loads in plate are expressed as

_2m2 ,,a Cos2nny
Nx(x,y)=-T_ _ so - 7 ,

8a All o

Ny(x,y)=_Ty gZnZ j_oCos2mrcx
8b2A22 a '

N (x,y) =O.

(2.41)

Here Tx, Ty
conditions

= averaged compressive plate loads in x and y directions. They should satisfy the

b b

T f N (x,y)dy=- l-f 02¢ dy:Const,
l) 0 b3 00y 2

a a

T=_lfoNy(x,y)dx= lf_O dx =

(2.42)

It is obvious that Tx, Ty are independent on coordinates x,y. Substituting equations (2.38),

(2.40) into conditions (2.37) together with simultaneous using the average laminate stresses Px,

py result in relationships
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Px Py l"g2m 2 - Py Px + 11;27/2.-2

x So,sb
(2.43)

where

E 1 E 1 Al2 B|2 AI2 Ey
.... - __ - _-=--,i.txy-

_ An h'y A22 h'layx All _22 A-_:ll'YX_x
(2.44)

are laminate elastic moduli and Poisson ratios (average of lamina moduli and ratios [14]).

According to (2.36)

B22 BII B12 1
All- , A22- , A12- , A33- , B=BlIB22-B22 •

B B B B3 3

For fo determination we use the approximate solution of second equation (2.35) by

Bubnov-Galerkin's method. According to it

ab

f f dxdy=O
a b

oo

Substituting equations (2.38), (2.40) into this equation, for f0 ;e 0, the following relation can be

obtained after some transformations

mE- n___2 +E(m,n)fgo:O, (2.45)
D(m,n)-Px-_ PY4b 2

where

X2( m 4 m2n 2D(m,n)=-_ Dil--a- 2 +2D3 aZbZ

re2{ m 4 n4_

E(m,n) : -_[E_-_ +Ey-b_ J .

Critical state of the plate is determined from the condition of nontrivial solution fo_O of

equation (2.45). For proportional loading py =¢'Px, we can find

P/ :minpx(m,n) =px(mo,no), P f :OP;
m,l'l

px(m,n)= D(m,n) ,
m 2 n 2

--+]]l--

4a 2 4b 2

(2.46)

where mo, no = numbers of half-waves in buckle pattern of plate cell. Fixing these numbers for

postbuckling plate deformation phase at px > p_', we can obtain from (2.45) the following

dependency Offo 2 on p_, py
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d=Do(&
o

(2.47)

where

p=p+p,, g-P,
Pw Pyo

D O=D(mo,no), Eo =E(mo,no),

4a2 D 4b 2
Pxo=--_ - o, Pyo=-_o"

m 0 no

(2.48)

Substituting equation (2.47) into equation (2.43) at m=mo, n=no, p _> 1 result _in two

relations between ex, ey and px, py similar to that for prebuckling deformation phase p _< 1,

when at fo =0, G = ex, ey = % the usual relations (2.36) of prebuckling plane stress state of

plate are valid

Px Py Py Px (2.49)
_o : _--"._-, %o-

So the postbuckling state of representative plate cell is fully determined including its deflections

and bending stress-strain state; the boundary conditions could be determined by mutual relative

displacements G, ey, by external forces T_=pflz, Ty=pyh or by their combinations ex, Ty and G,

L.
The characteristic features of obtained solution are that the shear forces are equal to

zero including the forces on the edges of plate cell as well as the nonlinear variation of contour

tangent displacements along the edge. This result in inaccurate satisfaction of compatibility

conditions for displacements of the plate and ribs in the direction along rib, when these

conditions are satisfied integrally (the so-called edge slipping). Marquerre [5] has shown that

this has no appreciable effect on the SSS of plate and ribs and all the more on reduction

factors.

Reduction factors

As far as stiffness characteristics of buckled composite plate are concerned, let us consider the

most interesting case of uniaxial longitudinal compression of elongated plate with a > > b. We

will use usual nondimensional parameters of the theory of orthotropic plates

D3 r_- bZhp_,
- °= ' /G,D= D=

(2.50)

The solution of instability problem (2.46) for _b=0, 1/ffot _>3 can be expressed by known

relations
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1 * _2V/-_lID_ * K£=2(1 +[3). (2.51)
n o = 1, tab - , Px - Kx,

For the amplitude of postbuckling deflection fo from (2.47) we can obtain

I I (1+[3) Px (2.52)
Exh = 4 v/-2 1).f0 -f0

Av_uD u _ (l+Y)(fi

Here an additional nondimensional stiffness parameter is introduced

y _

AliDlt _ B22DI1 _ EyDll

A22D22 BII D22 ExD22

(2.53)

influencing the postbuckling behavior of plate.

Substitution of equation (2.52) at py=0 into relations (2.43) results in the following

relationships

+ 2ex'/ex]
ex= , p- E_ex(l+Y) 1 =E_e x,

Ex• (3+y) [ _J (2.54)

,

Px 3+v-2 p_
Px

Ex(1 +Y)

PX

:--- I__, 1 - = s (e,, :p_/E)ey -I'tyx s'
E_ (1 +y) [, Px }J E,_

As we can see from the comparison of relations (2.54) and (2.49), the buckled skin behave like

non-buckled plate made of nonlinear elastic material exhibiting the reduced averaged elastic

modulus E_=l/ASnh=_, ,, Ex and corresponding reduced stiffness characteristic A ,-Au/¢ _.

From equations (2.54) changing e_ by _0 we can obtain two equivalent expressions for secant

reduction factor _,$_=E$ ffE_ <_1

$

q)x-
(1 +_')

(l+y) J' (2.55)

where _,x*= 1 at p.=p_", e_o=e.o and prior to buckling. In particular case of isotropic plate

when .y = 1, this expression can be transformed into the following one
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f/s 1 _1 l+eXo

q°x-2_px 2t  xo)'
PX

which corresponds to the solution [5]. Thus the unique parameter determining the distinctions

of reduction factors for orthotropic and isotropic plate is the nondimesional parameter 3'- In

accordance with equation (2.53) for homogeneous and quasi-homogeneous plates, the

parameter 3' is also equal to unit because the following is valid

Ex h3 Eyh 3

Dll : 12(1 -I_xy _rx)' D22 - 12(1 -I.t_ p.r_) "

Thus we obtain an important result, that such plates behave like the isotropic metal plate with

respect to the longitudinal stiffness.

In addition, we obtain from the second relation (2.54), that the Poisson ratio is also

reduced according to relationship

i.tyx=qL_Iiay_ ( ] T-y) (1-px lpx) ]=qb, l.tyx-( -q_ x) d,
(2.57)

where the additional parameter d=_ has appeared. In particular case of homogeneous

material, this parameter may be replaced by d=EV_y . For isotropic skin we can obtain

s s( sp.y, = ¢p_ _-l+p;/px)=_x(l+_)-l.

It is obvious that the value of reduced Poisson ratio can be expressed through the reduction

factor ¢,x_, which in its turn depends upon the extent of critical state exceedance PJPx" or cx0/ex0'.

Fig. 2.21a shows the typical generalized dependence of pip,," upon e_0/ex0" obtained

from equation (2.54). These functions do not depend on parameter /3; they are piecewize

linear. The obtained solution gives the constant slopes of these curves in postbuckling region.

The tangent modulus E_=l/Anth=,:,xtEx and reduction factor

t _ (2.58)
t E:_ 1 dPx _ l+y (_otxlv=l:0.5)

q_x-E_ Exde_o 3+¥'

are independent upon PJPx" or exO/e_"

These results qualitatively correspond to the results of numerical solution of the problem

under consideration given by Stein [10]; they coincide for the initial phase of postbuckling

deforming. The dotted curve in Fig. 2.21 shows the particular case of isotropic plate, which

correspond to the relationship (2.59) reliably verified by tests (see [1], [5] and Fig. 2.11):
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p ;31 .s %0 t 2 , (2.59)

The obtained solution is rather accurate in the region of "moderate postbuckling" when the

conditions eJc,,0"<_ 7, pJpx'<_ 4 are satisfied. If buckling state is exceeded more than in these

conditions, the value of _,x" appreciably differs from the numerical result [10] and results of

calculation by equations (2.59). In accordance with equation (2.55), this value approaches

(1 +¥)/(3+y)=_tx as pjp]-.o,, , while the tests and equation (2.59) give considerably smaller

values _OxS--,0.The reason of this discrepancy is certainly the constant representation of plate

deflection mode (2.38), while the real mode modifies during the plate loading up to the

possible full change of wave pattern [1]. For quasi-homogeneous plates in this case, the

relationships (2.55), (2.58) can be changed by relationships (2.59). It should be noted that for

uniaxial loading, the introduction of elastic modulus reduction factor _,xs with respect to the

longitudinal stiffness of skin is the same as the introduction of effective skin width by yon

Karman bx=_x'b at the same Ex, because E,:b=E,:b.,,=_oxS(E2b).

In case of biaxial loading, after substituting equation (2.47) into equation (2.43) and

taking into account, that ex = e,,0, ey=e.:, we can go over the usual relations (2.49) with reduced

stiffness characteristics

Px s Py Py s Px (2.60)
%o : -- - _ _ -- , _ : : -LS_- _ _ -_s '

E; E; E; E;

where

"_ _E 1 , E _ _--'__! _ A_2
--)

tz_:_ =A:lh y:_ytZy-A_ h, I.ty_=-A[ 1

5 .S E sA12 s All s y

I%- ---I_y_Z-Z_ :l_y_--Z-_,
A_ Az2 E x

(2.61)

8 $ $

and the secant reduction factors _x_, _,y, Poisson ratios t_xy, _t. can be expressed by the

following way

1 +_ • 1 +'_

_x-3 +_-2//_' q_'- 1 +3_-2_/,B'

_=cpy _ 2_ 1- =_oy I_y ,
d+(l+_)\

k

[ -( s/](I+Y)i P)] "

(2.62)

The following notation are introduced in (2.62)
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4e 2 I_=_2Er_l___,y _=lx = -Ex a b

ly mo no

The latter two depend on the direction of loading (¢,). Thus, as in case of uniaxial loading, the

buckled plate can be replaced by the stiffness-equivalent nonbuckled plate made of nonlinear

elastic material with characteristics (2.61),(2.62). The extent of critical state exceedance under

biaxial compression is characterized by the load index p becoming equal to unit in critical

B ,

state. In particular case of uniaxially loaded elongated plate, when _,=_,, d=d, pxo=p_ , the

relations (2.62) result in the above mentioned relations (2.55), (2.57). The important inverse

statement is also true, that the general expressions (2.62) can be simply obtained from (2.55),

$ A'

(2.57) by substituting p, y, d for p_/px °, _, d respectively. After that _Oy, #_ can be obtained

from ,px_, #yfl by the simple change of variables x_y, y_x, y_l/y, d_l/7t. Stain-stress

relations (2.60) in the obtained solution are piecewize linear with constant secant elastic

characteristics

, , 1 _ e a; --eJh,

_PX

g t tr. 1

y =q_@r- Oey °

0p,

t t OexO t [

p._ = -E;-- = q_y[la_0p_

t t OEyO [

_tyx= -Ex--_px =_'x[ lt" --

A;2= t t t t- _yxA 11 = _ ii.xyA22 ,

_ Ey, A22=E;h,f+3)

t

t 1 -tpy
2_ =qayl.t_ _ ,

d (2.63)

It should be noted that all stiffness matrixes of the buckled skin [Au'], [_..t], [BUs] = [/_..s]-I

[Bu t] = [Au..tl-_ can be uniquely determined by the introduced secant and tangent reduction

factors and other elastic characteristics of material (2.62), (2.63).

If numbers too, no are fixed, all the reduced stiffness characteristics depend on the loads

identically. The character of these functions is determined by the index p ; it is independent

on the load path. Since in accordance with equation (2.46) in general case mo, no depend on
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nondimensional plate parameters o_, t3, a/b and they discretely change as _, changes, the

relations (2.62), (2.63) behave similarly. The boundau of stability p=l in Px, py-frame of

reference is the piecewize linear function; these pieces are created by the straight lines

corresponding to mo, no = Const. For the constant values of p>l , the similar piecewize

boundaries with discrete change of too, no and relations (2.62), (2.63) at corresponding values

of _b (see Fig. 2.22).

In each rectilinear piece of this boundary, the reduced plate stiffness characteristics are

constant and independent on the load direction. For the plate which form is close to the square

when too, no are independent on _k and equal to unit, we obtain unique relations of reduction

factors and loading index p for all possible load spectra. These relations (2.62), (2.63) are

the same for all load paths including the case of uniaxial compression in x or y directions.

2.4.2. Shear consideration in compact plates

The plate is considered to be "compact" if _ parameter satisfies the inequality

0.5 _a <2. (2.64)

If such plate is loaded by the loads Tx, Ty, S, its deflections at the moment of buckling can be

approximated by the expression [1]:

w=fnsin nx sin _Y +f22sin 2 n x sin2 n y
a b a b '

(2.65)

which satisfies the simply supported edge conditions (2.39). The solution of the first

(2.35) in this case is:

TxY 2 Ty x2 ,, +.-. 2nx .-. 2ny .-. 4_xx
.... ,.3xy I..lCOS-- +l.2eos-- +l_.3cos-- +¢(x,y) 2 2 a b a

4_y _ nx 3ny _ 3_x r_y
+t.,cos---_- + t.,cos--_cos--_- +t.6cos--_---cos. g,

where

a 2 b 2 a2 )2_g2,c1-1 2:, c_1
1 b 2 1 _2, C5- 1 1.f A2 ' c6_25 iliA2 '

Ca- 32 a 2 A H 25 A 5 A 6

equation

(2.66)

(2.67)

and
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2 2

b a , A6=0.01___2A1 ' +0.81b2A22+O.18A3. (2.08)A s =0.0 l--A2., +0.81--A 11+0.18A 3
a2 z b2 . a 2

The membrane forces in the plate are defined by the following expressions

T C 4_2cos 2gy " 16r_1 4r_y ,-, 9_ z r_x 3gy ,-, r_z 3nx _y
.... I..,4__COS-- - L.,5-- COS-- COS-- - l. 6-- COS--COS -- ,

Nx(X,Y)-- x 2--_-_ b b 2 b b 2 a b b 2 a b

/Vy .... 4n2 2r_x ,-, 167z 2 4_x ,., _2 nx 3ny

tx,.-- - _-t.1 _--5-_os-- -_-3_--S-c°s- -t._-2/COSaCOS-_ -
a a a a

C 9_2cos 3nXcos _y
a

392. gx. 3gY_c ,392 sin 3rrx s inr_y.
Nxy(x,y)=S-Cs-_m--ff_"_-ff - 6 ab --a- b

(2.69)

For the relative mutual displacements of plate edges, the following expressions are obtained:

P_ Py Py Px a 2

e , = --_ - _ --_y+B_, e _ E---_y- p.y_,--_ +--_ B e ,

_2 _ _2 _

(2.70)

The elastic moduli and Poisson ratios used in equations (2.70) are determined by equations

(2.44).

The plate average shear deformation can be expressed by the relationship

1 - I_=_+I(VI_=a_VI_=O),0 =_(u I_:b-u
(2.71)

where

a a

b b

(2.72)

are the displacements u and v averaged over the plate edges.

For determination of functions u(x,y), v(x,y) the expressions (2.3), (2.49), (2.65), (2.69)

as well as relation .ixyo=N_rlG,,yh where G,,r=llA33h =B3flh.

After performing the integration (2.72), we substitute the result into equation (2.71)
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where

8= 1: +B0, (2.73)
G

xy

2f f [1 _2)_(ga+g4_2) ]n0-- ,, +g3
2 a 2 1 18 1 18 a 2 1 2 1

gl = 1 * P._
25 62 Ac,E h 25 A_Eyh p'_' g2=l 25 bZ AsE_ _ 25AsEyh

2 b 2 1 18 1 18 b 2 1 2 1

g3 =1 + h P'yx, g4 = 1 +25 a2 AsE, yh 25 AsE,_ 25 a2 A6E, yh 25 A6E _ p'y'"

For determination of fll and f22 we will use the solution of the second equation (2.35) by

Bubnov-Galerkin's method. Transformations yield two cubic equations with respect to desired

parameters

C7 --3 ....

?d, 1+Csf, ,Y22 +fll (1 -/_) -4_f22 =0,

C_232+Cs_lf22 +f2z( 16-4/_)-4_711 =0,

(2.74)

where t7 is determined in accordance with equation (2.48) at mo =no = 1 and

C 7..... +_

_- 17 9 _4/ _ _1 fll f22- ' 120 - - f22 -

z 0 32 abh V_ll_2Z, h ' h

(2.75)

The stability boundary is determined from equation (2.74) assuming the smallness of

amplitudes f,, f22

--2

_ 4x, (2.76)
p +4_l-_,=1, (/S,<4).

The buckling mode is determined by expression.(2.65) in which

7
f22-. */11'

4-p,

and p,, v, is a critical combination of forces p, _"

In the postbuckling region, when
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/_:/_q, _ :_ q, q _ 1, (2.77)

the amplitudes f-11, jTz2 are determined by the following way:

It follows from (2.74) that

_zll _/S- 1 + 4 (4-/_) { 2 '

 qg- )

(2.7s)

_ _ ¥

where {=fll/f22 and ----:--* <{<0.5.
4-/_,

The relationship for q determination is obtained by using the equations (2.74)

C 9(1 - _2) - 1

q =/_, (C 9-4_2C9 - 1) -4_ _',

¢2.79)

where C9-
1-16_ 2

Consequently, the determined values of q and f_n correspond to each value of/_ according

to (2.79) and (2.78) respectively. So the one-to-one relation between amplitudesfu, f22 and ,_, _"

is established. If q is given, the corresponding values of (,fn, f22 can be obtained by iterations.

Expressions (2.70) can be reduced to the form (2.60), (2.61), which is valid for the

orthotropic plate with variable elastic parameters and Poisson ratios depending on extent of

critical state exceedance q at proportional loading. The expressions (2.73) can be reduced to

the form:

_ • s s (2.80)7_ s ' G,,y= q_ G_.

By setting for buckled plate

ex=e xo, ey=g yo, 0=Yxy,

we obtain
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s [ s 2--

- 1 1 =i ° I.txy= E;

_oy

(2.81)

S $ $ $

Reduction factors _ofl, ,py, _,_, Poisson ratios _t,,y, t_yx are expressed from equations (2.81) by

the following way:

q_- l+B/p' _rx-q_ i'tyx b 2 ' q_y- 1-_ a* Ex B P'_=lsYx E q_ 1 +Bo[x

b' e, t7

In equations (2.81) and (2.82) the following is denoted:

/_= Ex /_o :B0 G_
B" pT ' _ o

If S=0, relationships (2.82) are converted into relations (2.62) at mo=no=l.

Figure 2.23 shows the factors %*, _o,"versus q according to equation (2.82) at different

ratios P14, _lP for the plate with c_=1.

Tangent reduction factors in presence of shear are calculated numerically on the

increments of p, T at the reached level of c.ritical state exceedance. They are shown in

Figure 2.24 for the plate with o_= 1.

2.4.3. Analysis of stiffened composite panels with the local skin buckling

It is known that the skin of thin-walled aerospace structures often buckle locally under load

which is much less than the general failure load. The nonlinear problem arises to determine

the general stress state and load-carrying capability of such structures with buckled skin.

For example, the static bending failure of wing box is usually caused by the general

instability of upper stringer-stiffened panel. After skin buckling, the panel is considered as the

structurally orthotropic panel with reduced skin elastic characteristics which depend on the load

level. These characteristics enter into the known expressions for stiffness [B], [D] of

structurally-orthotropic panel.

Thus, two different problems should be solved. First, the prebuckling stress state in the

structure with buckled skin is determined for the increased load (t parameter) by using some

method, e.g. engineering "beam" method or finite element method. The stress resultants

(membrane forces) are determined which nonlinearly depend on the external load (Pt(t) in case

of wing box bending). These resultants are necessary to solve the general instability problem

for each t value.
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The numerical method for thin-walled structural stress state determination in application

to the metal structures was reported by the authors on the Second World Congress on the

Computational Mechanics in Stuttgart [21]. With the help of special methods of reduction [22]

and special finite elements, the problem is reduced in essence to classical iteration methods of

variable elasticity parameters and the others which are applied for the stress analysis of the

structures made of nonlinear elastic materials. The specific character of composite skin is only

in the necessity of calculation of its secant reduced elastic characteristics in postbuckling phase

by using the relatively simple relationships obtained above. Thus, the method of analysis

proposed in paper [21] can be applied to the structures comprising composite elements.

The second problem of general instability of both separate structurally-orthotropic panel

and cylindrical structure as the whole can be solved for each load level by the different method.

However, in contrast to the SSS-problem, the tangential stiffness should be used in stability

equations, which characterize the relations between the increments of generalized forces and the

deformations of elements. This result in the necessity of calculation of above mentioned tangent

elastic characteristics for buckled composite skin, in particular according to relationships (2.63).

Naturally, furthcr theoretical and experimental investigations are necessary to refine both secant

and tangential reduction factors for locally buckled composite elements . This specially concerns

with nonplanar, nonrectangular elements with complicated boundary conditions.

The panel in Fig. 2.1 is a regularly stiffened panel. Its stresses and strength may be

evaluated through the theory taking into account local skin buckling and the skin/stiffener

interaction. Let us limit ourselves to the case of biaxial compression loading and involve the

approximate solution derived in 2.4.1 for a plate cell. Thc following notation will be utilized

hereinafter:

P1 and P2, the loads applied to a portion of the panel;

EFl and EF2, the longitudinal stiffness characteristics of uniaxially loaded stiffeners

(webs) for the x axis and the y axis, respectively.

The composite-skin stress resultants (Tx and Ty) and the stiffener forces (Nl and N2) are

unknown values depending on a ratio of stiffnesscs of webs and the skin, the out-of-plane

deflection and stiffnesses of the skin at the postbuckling stage depcnding, in turn, on px = Tflh

and py = Ty/h, see (2.47) and (2.62).

The solution and the relations (2.38) - (2.45) for the plate keep their form but should be

complemented with skin/wcb deformation compatibility equations:

ex = NI/EF1, ey = N2/EF2

and panel portion equilibrium equations:

Pl = 2N1 + pxhb, P2 = 2N2 + pyhb,

This produces:

P1 hb P2 hb (2.83)
ex - 2EF1 Px 2E---F-_-1 , ey - 2EF2 py 2EF2

Relations (2.43), (2.45) and (2.83) are a closed system of 5 linear algebraic equations for

5 unknowns px, py, f0 2, ex and %. Equating the fight-hand side exprcssions in (2.43) and (2.83),

we derive the following relations (depending on f0) for px and py:
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Px = P'x

f

py = py

7t2fg E x ky t.txy
8k _ + '

(n2:1_2fo Ey k + m2
8k x _ gyx ,

(2.84)

where

p2)= E__5_x(P1 k +--gxy
Px = Px fo=0 k _,2EF 1 y 2EF 2

PYfo (2"_2 Pa 1
, Ey P2 k +-- _tyx

Py = =0=--k -- x 2EF1
(2.85)

are thickness-average stresses obtained for the case of a flat (not buckled) plate (i.e., f0=O);

additional symbols here are

E x hb Ey ha

k x = 1 + 2E-----_l, ky = 1 +--2EF: ' k = kxky - I3.xykl.yx .

t W

Note that f0 = 0 for a flat plate, so relations Px = Px and py = py hold according to

(2.84). In addition, if stiffeners are "weak" (so that EF! --_ O, EF2 --+ O) the relations (2.84) and

(2.85) provide

, Pl ( -_--1 , P2(___)Px = Px = _ Tx = , Py = Py = hakT" =

i.e., wc turn again to the case of specified skin loading not depending on f0, as

considered in 2.4.1.

Substituting px and py from (2.84) into (2.45) at f0 _ 0 results in the following equation

for the displacement amplitude:

4 4

, m , n E'(m,n)f02 0 (2.45')D(m,n)-px 4a-----T- Py 4---_+ = ,

m4 n' 1where E'(m,n)= E(m,n) + _ Exky -7 + Eyk x V + 2Exktxy m2n2
a2b2J

When determining critical state of the skin from (2.45') and (2.85) the relations (2.46)

hold; therefore, (2.45') is the basis for us to write for postbuckling of the skin:

, i( m0f°= E-_o Px--4a 2 2 i D°' no D O =--(_'-1), (2.86)
+ PY 4b 2 E_
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t 2 t '_
pxmo pyn_

wherc E b =E'(m0,n0), P'=Px+P'y, P'x - , Py -
4a2D0 4b2D0

Now, stresses in the panel are determined complctcly: px and py

(Tx = pxh, Ty = pyh) are described by (2.84), ex, ey are from (2.43), Nx(x,y), Ny(x,y)

are written in (2.41), forces in webs are Nl=EFlex =(Pl -p,,hb)/2 and N2=EF2ey=(P2-pyhb)/2,

and the strain field is from (2.2):

m 2 2
gx(X,y,z) = AllNx(x,y) + A12Ny(x,y) + z---_w(x,y),

a-

"_ 2
n_rc , ,

gy(X,y,z) = Al2Nx(x,y) + Az2Ny(x,y) + z--_wtx,y),
(2.87)

-°z m°n°rt2 w'(x,y).
7_,(x,y,z) = - ab

Here, w(x,y) are defined by the formula (2.38), and

mTtx nTty
w'(x,y) -- f0cos-- cos--

a b

To evaluate the composite skin strength, we can assume that strains are uniform through

the thickness of a layer and equal to the layer midsurface strains. In this case the expressions

(2.87) define the plate layer strain components, with z being a coordinate of the midsurface of

a k-th layer. The plate is assumed to break down if at least one point in some layer reaches its

limiting state. Used as the limiting state criterion is the layer strength polynomial criterion

written with reference to the layer orthotropy axes:

__, __, +__--3-+--=1 (2.88)

-- --+
where zl2, °_, o_, o 2, 02 are respective ultimate stresses for shear, tension (+) and

compression (--) along and across fibers. Stresses {o}=[ol 02 xl2] x in each layer are described

as

{o}=[El{e}, (2.89)

where {_} = [c, c 2 YI2] T = [R]{_},
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[E]= 0 ,
0 G12

[P.]= ]
- n- mn

m- -mn

[-2mn 2mn m 2-n 2

[{_}= Cx ay Yxy , m=cos(p, n= sino.

The panel strength is determined by proportionally increasing the loads Pl and P2 in

increments from an initial vector at which the skin is flat. In this process we find critical

(buckling) stresses px and py (from (2.46)) and their respective loads P1 and P2 (according

to (2.85)), thereafter the stress field, the failure loads Pl and P2, and thc fracture point (by

using (2.88)).

At each load level a check is made of web strength:

NI / Fl_x = Eex / _x = 1, N 2 / F2_y = Eey / _y = 1, (2.90)

where Ox,Oy are ultimate stresses of web materials.

Of particular interest is the case of uniaxial loading of axially stiffened long plate; here,

we should adopt P2 = 0 and EF2 _ 0 and, following (2.84), assume that py= O, py' =0,

= O. In addition, relations (2.51) are valid for skin buckling. Upon some transformations the

equation (2.86) produces the following out-of-plane displaccmcnt amplitude formula that

generalizes (2.52):

i i ,l= 4"q_ (kk+ 2) V.px
(2.91)

whcre px' = ExP1/2kxEFt. Equation (2.91) becomes relation (2.52) when EFI _ 0,

kx _ oo and px' = px = Pl/hb. Similarly (with due account of (2.91)), the first relation in (2.84)

produces the mean skin stresses:

,Ic

zt2Exfo m2 k x + kx_' + 2px/Px
Px = Px - - Px

8kxa 2 k x + kx_, + 2

(2.92)

With this, the force in the longitudinal webs is

Pll3kx +k×y -2(k×-1)px/p_ ]

2NI = PI - Px hb = kx(k x + k D, + 2)
(2.93)

If the panel load severity factor ( px'/px* = P1 /PI* ) grows (and the skin deflcction

increases, according to (2.91)), it is easily seen that skin/stiffener load distribution does change

so that a skin load decreases and a stiffener force increases. Asymptotically (as P1 /Pl* -_ oo )

this leads to the values below:
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kx(l+r)
Px_ = Px kx(1 +_,) + 2

3 + 7 (2.94)
2Nl_ = P1 kx(1 + _,) + 2

These same loads corresponding to the case of no skin buckling do not depend on the

panel load severity factor and are constant:

px = PiEx/2kxEFi , 2N1 = Pl/kx • (2.95)

It may be readily demonstrated that the same solution (2.92) - (2.94) can be derived by

employing the general method with reduction coefficients if we consider joint deformation of

two flat elements, of which one (the skin) has a variable modulus of elasticity depending on

stresses: Exs = q_xSEx. To do so, it suffices to transform equations (2.95) by substituting

E× for Ex _ and

kx for kx s = l+Ex _ hb / 2EF1

and, thereafter, to solve these equations by either iterations or explicitly, through the use

of (2.55) for the reduction coefficient q_x_.

If compression is biaxial, the panel stress field and skin/stiffener interaction are governed

not only by the nondimensional parameters introduced earlier but also by complementary

parameters kx > 1 and ky >_ 1 that characterize a ratio of stiffnesses of the skin and webs; also

significant become the skin layup sequence and the skin-layer/web strength limit ratio.

Let us demonstrate this with some examples.

A stiffened rectangular plate with the length of 300 mm and the lOO-mm width is loaded

longitudinally by a compressive force P1. The graphite/epoxy skin has a (+ 45/90/0)s layup, ply

thickness of O. 11 mm, and the following ply characteristics:

El = 12000 kg/sq.mm, E2 = 850 kg/sq.mm, G12 = 650 kg/sq.mm,

I.t21 = 0.27, _- = 100 kg/sq.mm, _1- = 100 kg/sq.mm, _- = 2.4 kg/sq.mm,

_2 = 9.5 kg/sq.mm, xl2 = 8 kg/sq.mm.

Web cross-sectional areas F_ and F2 are 5 sq.mm, the elasticity modulus E is equal to

18,000 kg/sq.mm, and strength limits _x and _y are equal to 100 kg/sq.mm.

Results of computations using the above relations are represented in Figs. 2.25 through

2.28. Middle curves in Figs. 2.25 and 2.26 show the influence of the panel load severity factor

on the postbuckiing deflection relative amplitude f0/h and the reduction coefficient

q)xs = px/exEx. Figure 2.27 represents distributions of Nx in the skin transverse direction at

various values of Pl/P1*; note that m0=3 and n0=l. Figure 2.28 depicts the effect of P1/Pt* on a

mean stress NI/F1 in longitudinal webs. The panel fails due to web failure in accordance with

the condition (2.90).

Also, Figs. 2.25, 2.26 and 2.28 demonstrate the calculated results for various web

stiffnesses -- when Fl(=F2) is increased and decreased by a factor of 10 from the initial value 5

sq.mm (and the parameter kx varies from 1.23 to 24.55, respectively). In many cases the first to
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break are longitudinal webs; however, if we raise the web ultimate stress, the sequence of

failures in the skin and webs gets changed.

For instance, when Fl=Fz=5 sq.mm and _x = _y is increased from 100 to 120

kg/sq.mm (see Fig. 2.28) the first to break is the composite skin. The limiting state appears in

the 45-degree layer at z=0.385 mm at the plate center (x=a/2, y=b/2).
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3. Part 2. General model of joints in composite structures

3.1. Problem statement

When designing a composite structure, one should try to reduce the amount of joints and

attachment elements and to develop the structure as a unit. However, no one designer could

eliminate joints, therefore the analysis and design of joints remain an important problcm in the

process of introduction of composites in complex built-up airframes.

To attach composite structures to one another or to metal structures, perspectives are with

adhesive bond as the most suitable in view of the features of composite materials. These joints

can appropriately transfer the distributed loads between plates of intermediate thickness. In this

case the joint is a regular continual part, and analyses may be based on the theory of elasticity.

Low ultimate compressive stresses; the presence of weak polymer layers; low ultimate in-

plane shear stresses; all this notably reduces the load-bearing capability of the mechanical joints.

Boundary effects around holes and/or other discontinuities in materials may both result in local

interply failures and notably change the cffective stress concentration factors.

These problems are solved by using the computational models based on the finite-element

method alonc or in combination with other means (such as structural mechanics and the theory

of elasticity).

Section 3.2 presents an algorithm for analyzing adhesive bonds of various types. The

theory makes it possible to determine stresses _x, "Cxy,and _y for all components of the joint;

this is a necessary condition for cstimating the strength, taking into account that the shear and

flatwise tension ultimate stresses of composite plates are comparable to those of the adhesive

layer.

The problem is solved by employing the Papkovich method that assumes the stress field

to be decomposed into a fundamental state and a correction. The fundamental solution is the one

satisfying the equilibrium equations and boundary conditions for the surface. If deformation

compatibility condition is not met, corrections are introduced, each of which corresponding to a

self-equilibrium stress field.

The corrections are detcrmined by utilizing the strain energy; true stresses in an elastic

body correspond to minimum strain encrgy.
Section 3.3 considers some models supporting the analysis of joints in stress

concentration zones and load application areas:

- a model for analyzing the mechanical joint,

- a model for analyzing adhesive joints near stress concentrations,

- an analytical model accounting for three-dimensionality of joints.

The first two model are applicable to study of two-dimensional joints and are employed

to evaluate adhesive and fastener joints around stress concentration areas (in particular, to

analyze repairs with in-service damages).

The third model is for analyzing stresses and strength of joints that transfer great

concentrated loads. It can be used to study a wide range of joints in composite structures. The

model has been validated by comparing the computed values with the analytical, numerical and

experimental data available for some types of joints.
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The model and related computational techniques can bc employed to determine stresscs

in very diverse joints and to reasonably sclcct parameters of joints of composite elements in

structures.

3.2. Engineering analysis of commonly used adhesive joints in composite thin-walled
structures

Consideration is given to theoretical analysis of stresses in an adhesive joint of two

sheets. The sheets are assumed to be made of polymer filamentary composites. A feature of such

joints is that the shear strength and the flatwise tension ultimate stress of composites are

comparable with the same characteristics of the adhesive layer, therefore the analysts need stress

components in all structural elements - not only in the adhesive layer as the analysis of adhesive

bonds in metallic structures assumes.

Below, variational analysis is provided as a basis for determining stresses in the sheets

and the adhesive layer. Sheets are assumed to be loaded in tension, but the method may easily

be generalized to cover the problem of stress state of components under pressure.

3.2.1. Computational model of symmetric and asymmetrical adhesive joints

In real structures the width of sheets is much larger than the total thickness, therefore the

stress state may be analyzed by using a strip with a unit width (Fig. 3.1a) that is under plane

strain conditions.

At edges of the sheets the elastic axis of the bar has jumps with magnitudes Ayi. The

latter is defined as a difference between the sheet neutral line and the neutral line of the section

including the adhesive joint. If the bar is loaded with a tensile force P, then the elastic axis

deforms and extra bending moments and transverse shear forces appear, added to the tensile

load. We should start with estimation of the forces/moments over the bar.

Evaluation of forces and moments over a bar cross-section

Consider tension of a continuous bar whose elastic axis looks like that in Fig. 3.lb.

Types of joints that could be transformed thereto are represented in Table 3.1.

To compute strains, bending moments and shear stress resultants, we can employ the

general equation (written in terms of initial parameters, see [1]) for the elastic line of a tension-

loaded and bent bar. The co-ordinate system origin and the positive directions of axes, strains

and stresses are identified in Fig. 3.1c. After the necessary transformations, we obtain the

following relations for computing the initial parameters:
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w

-- YL + YR
Qo = Qo -- - P

Mo = - Mo

LL + LR

Ay L A R ChvlR - AYR AL ChVIL - AYo AL BR ChVlR ChvlL

= P (AR BL + AL BR)Chv1RChV1L

(3.1)

q_o = (Po -
Qo AYL BRChVlR + AYRBLChV1L + AYo BL BR ChvlR ChvlL

P (AR BL + AL BR) ChVlR ChVlL

-- Mo YL LR - YR LL.
Yo = -Yo = -- -

P LL + LR

where

1 1
Aj = --thVlj +--thv2j,

Klj Kzj

Klj
Bj = 1 +-- thvlj thvzj,

Kzj

Kij = , vij = Kij lij

ij

i =1, 2; j :L, R

-J) a an i-j portion.is reduced stiffness of

ij

Other components present in (3.1) are identified in Fig. 3.1.

Adopt the common x0y system and take into account that

YL =-YL, AYL =-AyL, M1L =-M1L, x=-x.

Then equations for bending moments and shear forces over the portions of the joint may

be written as follows:

Portion 1L ( -IlL --< X < 0 ):

M1L(x) = (q°oP + Qo) Sh(K1Lx)
KIL

+ MoCh(KILX),

QIL(x) = (qooP + Qo )Ch(KlLX) + MoK1LSh(KILX)- (3.2a)

Portion 1R ( 0 < x _< Its):

Mm (x) : (q_o P + Qo) Sh(K rex)
K1R

+ (Ayo P + Mo)Ch(KIR x),
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Q1R(X) = (O0 P + Qo)Ch(KIRX) + (AyoP + Mo)K1RSh(K1RX). (3.2b)

Thus, the joint is considered to be subdivided into portions that are between the cross

sections with free edges of the sheets. A loading pattern for the adhesive joint is shown in

Fig.3.2.

Idealized bar model for analyzing the stresses

The real joint may be transformed into the model that is an idealized bar (Fig. 3.3a)

composed of a finite number of longitudinal elements that are mutually bonded by webs. The

longitudinal elements (whose total cross-sectional area is equal to the cross-sectional area of the

original object) carry the normal stress _x only. A cross-sectional area of an i-th longitudinal

elements is

where 5i-1 and 8i are depths of adjacent webs.

The webs are assumed to be two-layered components (Fig. 3.3b):

- one of them carries the shear stresses only; its shear modulus is assumed to be equal to

the modulus of the real structural portion substituted;

- the second layer is a set of distributed struts that carry the normal stresses _y only; its

modulus of elasticity is assumed to be equal to the modulus Ey of the real structural portion

substituted.

A web depth is determined as

8i = Yi+l- Yi

where yi and yi+l are co-ordinates of the center of gravity of adjacent longitudinal

elements in co-ordinate system adopted.

3.2.2. Hypothesis of local corrections

The solution of the adhesive joint stress problem relies upon the Papkovich method [2, 3]

that suggests the stress state being decomposed into the basic state and the correction state. The

basic solution is obtained by analyzing the joint as a tension-loaded and bent bar which has

discontinuity in the elastic line. The effects of free edges are allowed for by introducing

corrections that are some fast-fading exponential functions. In real adhesive joints the distances

between sections containing the free edges are rather long; this enables us to adopt the

3. Part 2. General model of joints in composite structures 50



assumption of no interaction between the correction functions introduced in neighboring

sections.

The hypothesis of local corrections makes it possible to transform the original "adhesive

joint problem" into

- search for the basic solution for the adhesive joint as a whole and

- independent determination of corrections that are local for the portions.

The basic solution is obtained from the analysis of the adhesive joint as a tension-loaded

and bent bar which has discontinuity in the elastic line. The local correction stresses arc

determined by solving the problem on gradual loading of a sheet through a semi-infinite bar

(with one end being free).

3.2.3. Analysis method

The Papkovich method assumes that the stress state is decomposed into the basic state

and the correction. The basic state is from the solution that satisfies the equilibrium equations

and boundary conditions over the surface; for the basic solution we use symbols

Ox, _x,y, Oy.

If strain compatibility conditions are not met, the correction solutions are introduced; they

also satisfy the equilibrium equations and the surface boundary conditions. Each of the

Correction functions corresponds to a self-equilibrium stress field. We denoted these functions by

using O (i), _(i) O (i), i=O, 1, 2, n._×,y, ...,

The true solution is written as

n n n

Ox=o, +Z - +-Z 0)
-- Zxy = Zxy Oy =--Oy +ZOy, _xy , "

i=l i=l i=l

By varying the correction functions, we can change the stress field while not violating

the equilibrium equations and boundary conditions.

When solving this problem, the basic solution is the one from the beam theory. It

provides a practically valuable solution for almost all span of the bar, and correction is only

necessary for a vicinity of sheet edges.

We may limit ourselves to introduction of one correction written as a product of two

functions, one depending on X, and the other one, on Y. Accuracy of such "truncated" solution

depends on qualities of the correction function.

Basic solution

Adopted as the basic solution is the solution provided by the beam theory with the flat

cross-section hypothesis. Equations (3.2) are used to determine the loads Mz and Qy applied to a

particular section of the tension-loaded bar; the beam theory suggests the following relations:
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_xi = -_--P(x)- _iYi Mz(X);Jz

Sz i

Yxy = Q(x)-_ ; 13y,i =0;

(3.3)

n n i Ex, i

where F=E_ifi , Jz=E_iy_fi , Sz, i = EgtkYkfk ' qti- Ef
i=l i=l k=l

yi is a distance from an i-th longitudinal element to the neutral axis,

Ef is the modulus of the material to which the cross section is reduced.

Correction function

Within the analytical model adopted the correction part of normal stresses in any

longitudinal element is described as

_°,i(x, Y) = _(X)¢y0, i
where i=l, 2 ..... n. (3.4)

Separate a bar element that is at a distance X from the co-ordinate system origin, as

shown in Fig. 3.4a. The equilibrium equations are then employed to find the corrective shear

stress applied to an i-th web:

p 0
Zxy, i = _ (X)7:xy, i

i
0 0 .

= EOx,kfkwhere 7:xy,i

k=l

i=l, 2 ..... n-1.

(3.5)

The equilibrium equations for an infinitesimal element cut out of the i-th web (Fig. 3.4b)

produces the differential equation relating the normal ¢Iy,i stress to the shear 7:xy,i stress:

C317xy,i
C3_y'i + -0.

Substitute the function 7:xy,i and take into account that _y,l=0; then integration provides

Cy,i(x, y) = X"(x) cY°,i(Y),
(3.6)

0 0 @where Cy,i(y) = Oy,i + xy,i(Y- Yi) ,
i=l, 2, 3 ....... n-l,
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i-I

t_O. 0
y,1 = 2 txY, k_k is the stress in the vicinity of the i-th clement.

k=l

Thus, the stress tensor components for each element of the

established using

ax,i = _'x,i 4-X(X)(_0i ;

-- _ 0

Txy,i = Xxy, i + X (X)l:xy,i ;

Ill _, 0

Oy,i = X tx_c_y,i(Y)

adhesive joint may be

(3.7)

_ 0

where _x,i and txy,i are from formulas (3.3), and C_x,i ,

(3.4), (3.5), and (3.6), respectively.

0 oO, i(y ) aret xy,i and from

0
Selecting the correction function (I x

The correction function should eliminate normal stress over free edges of the sheets, so it

is reasonable to assume that the function C_°x(y) is piecewise linear. The self-equilibrium

corrective function may be written as follows:

* upper shcet broken * lower sheet broken

(_x,i = x,i =

[ [311 + 0) iiY i i=k+l+n L]3i + 0) iYi i=k+l+n

(3.8)

Here, the index I is for the broken sheet, and II, for the continuous sheet.

Use the self-equilibrium conditions:

n n
0

E OOx,ifi = 0 E YiC_x, ifi = 0

i=l i=l

(3.9)

to derive

(FiJii - SISII)[3I + (SlJiI - JiSii)(0,

{311 = $2 _ FIIJII

-(FIS H - SIFII)_ I - (SISII - JlFll)(O i

O) II ----- S_ -- FIIJII

(3.10a)
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where F I--y'fi ; Fn =_fi :
k n-k

S l = _Yifi ; Sii = :_-_yifi ;
k n-k

Jl = ZY_fi ; Jll = ZY_fi ;
n-k

fi the area of the i-th element,

yi the distance from the i-th element to the neutral axis,

k the total number of longitudinal elements in the broken sheet,

n the total number of longitudinal elements.

In a section x= Xn at the end face of the broken sheet (index I) the normal stress o

zero, so the following equality holds:

6x,i + x(xn)O°x,i = 0.

is
x

Substituting the stresses from (3.3) and (3.8), obtain

P Mz(xn)

Wi ff-Wi _ Yi +X(xnXI3I +(°IYi)=O"

Assuming

Z(x n) = 1, (3.11)

we can derive the following relations for coefficients 131and 0)I "

P
_3I =-_'IJi _" COl = _i Mz(xn) (3. lOb)

With the function o°(y) determined, formulas (3.5) and (3.6) are utilized to determine

0 0 Figure 3.5 graphically represents the components ofthe corrective stress functions "txy and Oy.

the basic and correction functions in the section where the free end is.
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Determining the function Z(X)

With the function X(x) found, the relations (3.8) and (3.3) - (3.6) are employed to

compute all stress components applied in elements of the adhesive joint.

The sought-for function X(x) is determined from the minimal potential strain energy

condition; the energy may be written in the form,

U = I U°dV
v

1 (Cx,i) 2f,

+U2+U3= 
0 L i=l x,i

dx
i=l G xy,i _ Ey,i

where U1, U2 and U3 are strain energies, respectively, of longitudinal elements, shear-

carrying webs, and struts transferring normal stresses ¢_y; 1 is the length of the structure.

In longitudinal elements, all stresses, except for _x, are zero; _x stress is described by

(3.7); with this, the potential energy of all longitudinal elements is

1 I (_x,i + xCyOx, i)2 fi

i=l

1 !

-I(A0+2AIX+Ax2)dx
dx= 2o

(3.12)

n n l -- 0

A0 = E l'-_----fi_, i ' ml = Z"_----ficTx,iCYx, i 'where

i=l t._....x,i i=l x,i

Substitute in the equation for A1 the value of _x,i

relations (3.9), we have

A 2±ri(o°,,;
i=l Ex,i

from (3.3); taking into account

A1 - P _-_ 0 M_ 0
EfF fi_x'i + ----= fiYi_x'i = 0.

i--1 EfJ i=l

Thus, the formula for strain energy of longitudinal elements becomes

1
1

U, =-_I(Ao+AX2)dx .
0

In the i-th shear-carrying web the only stress component is shear, eq. (3.7). Strain energy

of all shear-carrying webs is

1 1

+2., Oy dx (3.13)
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n_lSi(_z,i) 2 _11 ; B! = 1 8___L__- 0 .

'=

B = Z_G_-_,i _Lxy,i]
i=l xyJ

For the i-th web transferring the normal stress _y the strain energy is expressed by

0 2 1U3,i =._ Z_/_((y0,i_ l:xy, iS ) ds

0 i=l y,i L0

dx

where s=y-yi and 5i=yi÷l-Yi •

After conducting the necessary manipulations, we arrive at the final expression for strain

energy of a web transferring the normal stresses C_y:

I

lU3=- 
0

(3.14)

n_ _i F1 [ 0 ¢ "_2 0 0 0 )2]
where C= i_=t_y,iL-_Xxy,i° Q --_Y,i('xy,i_i)+( (yy'i "

The potential energy of the entire joint is a sum of potential energies of all elements as

described by (3.12), (3.13), and (3.14).
After summation we obtain the following expression for potential energy as a functional

that depends on the _ function and its derivatives:
I

• "_1 FW\2

R ' X", B° + 2Btx' + B(_')z + U,X ) •where (X,X, x)=a0+ax z +

For a function )_(x) to deliver minimum to the functional (3.15), the Euler variational

equation must be satisfied:

0'_ dx + dx---_ \-_')

=0.
(3.16)

After the necessary transformations, we obtain the differential equation for the unknown

X(x) function:

(3.17)
CX Iv B_" + AZ = B1Q I- y

Coefficients A, B, B1, and C are described by (3.12), (3.13), and (3.14).
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Equation (3.17) is a linear differential equation with constant coefficients. Its solution can

be presented as

4

X(x) = Z Diq_i(x) + q)°(x)'
i=l

(3.18)

where Di are arbitrary constants,

q_i(x) are solutions to the homogeneous equation for (3.17),

q_o(X) is a particular solution to the inhomogeneous equation.

To find q_i(x), we should determine roots of the characteristic equation which is

biquadratic in the case under consideration:

Cr 4 - Br 2 + A = 0.
(3.19)

If roots ri of (3.19) are real and distinct, the solutions are

q_i(x) = exp (ri x) .
(3.20)

If there exist repeated roots - for example, if rl= r2, - then

q)l(x) = exp (rlx) , q_2(x) = x exp (rxx) • (3.21)

If eq. (3.19) has complex roots, these could be conjugate pairs - for example, +(rl + rzi)

and +(rt - r2i). The corresponding solutions appear:

qh(x) = cos (r2x) exp (rlx) and q_2(x) = sin (r2x) exp (rlx) • (3.22)

For the shear force Qy(x) established in accordance with (3.2) we have the particular

solution:

q_o(X) = mli Ch(Kl,iX) + m2iSh(Kl,iX) ,
i = L, R, (3.23)

B1RK2R(M0 + ayoP)

where mlR CRK4 R _BRK2 a +AR

rolL =

B1LK2LMo

CLK4L - BLK12L + A L

mlR =

BIRK1R(q_oP + Qo)

CRK4R - BRK2R + A R

, rolL =

B1LK1L(q_oP + Qo)

CLKPL - BLK12L + A L

The four arbitrary constants Di are determined from boundary conditions.

Two boundary conditions are implied by the local correction hypothesis: the function and

its derivative are limited at a distance from the sheet free end,

X(X) x=L_+m = X'(X) x=L_+m =0"
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The other two boundary conditions are written for the section where the sheet free end is

located. Normal stresses at the sheet free end are zero according to (3.4); this produces

%(Xn) = !. (3.25)

By assuming a shear stress resultant at the sheet free end to be approximately zero,

obtain:

Z_xY, i(xn) 6i = 0 ,

i

Here, summation covers all webs of the free end and the adhesive layer.

Utilize relations (3.7), (3.8), and (3.2) to re-write the boundary condition:

Zgz, si
Qy (xn) i

j y, 017xy, iSi

i

(3.26)

3.2.4. Computational examination of adhesive joints

Stresses in adhesive joint of a tension-loaded sheet with symmetric doublers made of the
same material

A schematic of the joint is depicted in Fig. 3.6a; initial data for analyses are reported in

Table 3.2. In this case we have Ay0 = Ay L = Aye = 0 and, therefore, y0 = q)0 = M0 = Q0 = 0.

The correction (see Fig. 3.6a) is defined by formulas (3.8) and (3.10):

{ P
0 F

ax, i = FI P

F

for doublers;

for the sheet.

Relevant expressions are utilized to evaluate "_0xy,i and (y0y,i and to determine the

coefficients A, B, and C of the differential equation (3.17). Owing to symmetry of the structure,

consideration is given to an analytical model comprising the doubler and a half-thickness sheet,

which are each modeled by 11 longitudinal elements (strips).

Differential equations for the X(x) function is of the form

0.576 XTM - 0.769 )¢" + 0.214 X= 0.
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The solution to this equation (taking into account limitedness of the X(x) function and its

derivative at a distance from the doubler free end) may be written as

X(X) = D2 exp(-rlx) + D4 exp (-r2x).

Use the boundary conditions (3.25) and (3.26) to establish the remaining arbitrary

constants:

D 2 - r2 ," D= -- rl
r2 -rt r2 -q

Thus, the solution to the differential equation appears:

X(x) = -1.852 exp (-0.969x) + 2.852 exp (-0.629x) .

Figure 3.6b represents plots of normal (CYy) and shear stresses in the adhesive layer;

variation of the stresses over the vertical extent of the section where the maximum stresses exist

is also shown - Fig. 3.6c.

The differential equation (3.17) may by transition to a limiting state be transformed to

the previously known simplified solution that is utilized in many articles devoted to behavior of

adhesive joints.

Assume that the sheets have a rather high shear stiffness (Gxy,I = Gxy,n --'} _) and that no

displacement is allowed through the vertical extent of the joint (for example, if there is a rigid

clamp): Ey,I = Ey,ll = Ey,a --)" _.

By transition to a limiting state we obtain the well-known equation:

.[,, . _2.[ ._ 0, (3.27)

where _2 = Gxy, a(1 + A) A ExlIFII; =
8aExIIFll ExlFI

The solution to this equation is of the form

P_.
x - exp(-_.x).

I+A

Figure 3.6d demonstrates the function Xxy,a, as computed by means of (3.27) (line I); for

comparison's sake, a curve taking into account, the real properties of the materials is also

depicted- line III. The line II in Fig. 3.6d corresponds to an analysis in which

Gxy,i=Gxy,ii _ oe , Ey,i = Ey,ii _ oo , and the adhesive layer has its real properties.

The allowance for real properties of all elements in the adhesive joint does notably

change both the profile shape and magnitude of shear stresses; there appears the possibility to

predict ultimate flatwise tensile stresses for both the adhesive layer and the sheets.

3. Part 2. Genera/model of joints in composite structures 59



Sheet with a one-sided patch

A schematic of the joint is demonstrated in Fig. 3.7, and Table 3.3 provides the initial

data for calculation. The model of the joint contains 11 strips in the sheet and 11 strips in the

patch.

Having chosen a corrective function in accordance with (3.8), we determine functions

"C0xy,,' and cY°y,l and compute coefficients A, B, C, B1 of the differential equation (3.17). The

diffcrential equation is of the form

0.0428 ZTM - 0.2066 X" + 0.1955 Z = QIyBt •

Roots of the characteristic equation (3.19) are real, and the solution is provided by the

relation (3.18).

Let thc free end of the patch be at the section x=xn; having satisfied the boundary

conditions (3.24) - (3.26) we write the solution:

X(x) = D2 exp[otrl(x-x,)] + D4 exp[otrz(X-Xn)] + ml ChKlx + m2 ShKlx , (3.28)

(r2-ot_)-(r2ml-am2K1) Ch(Klxn)-(r2m2-ctmlK1) Sh(KlXn)

where D 2 = r2 _ rl

D 4 = _

(rl- czae)-(rlml-otm2Kl) Ch(KlXn)-(rlm2-czmlK,) Sh(KlXn)

r2 - r1

_=-1 for x > Xn,

C_=1 for x < Xn ,

rl and r2 are roots of the characteristic equation (3.19),

Qy(Xn) Z6iSz, i

B]K?(AyoP + Mo) B1K1 ((Po p + Qo). _ = _ i
= , m2 --- ,

ml CK 4 - BK 2 + A CK 4 - BK 2 + A Jz Z 8i_°y
i

Summation covers the webs at the free end and the adhesive layer.

The results are represented in Fig. 3.7:

- variation of normal 03y,a) and shear (Xxy,a) stresses in the adhesive layer around the free

end of the patch (Fig. 3.7b) and

- distributions of stresses Xxy and Oy throughout the vertical extent of the stack in the

sections where the stresses reach their maximum values (Fig. 3.7c).

The work [4] solves this problem via a continual model and the variational principle of

the theory of elasticity. Computation results are almost coincident. Figure 3.7d represents

differences between stresses in the adhesive layer:
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(Oya)k(OYa) ,00 
('xYal ('xYa)d,00  Oya (°ya)k

xy,a -- xy,a)k

the index k corresponding to the continual model and the index d, to the discrete

model. The present model with an adequate total number of discrete elements provides a

practically sufficient accuracy of determining stresses in adhesive bonds.

Choosing the appropriate total number of discrete elements in model of joint

When establishing a model of a joint, the question appears, how many discrete elements

do we need to model the sheets bonded with adhesives?

To clarify the influence of the discretization degree on the analysis accuracy, the

maximum stresses in an adhesive joint of sheets were computed for various numbers of discrete

elements.

The joint discussed in the previous example was analyzed by using models in which

every sheet was modeled by 4, 6, 8, 12, and 15 strips. Figure 3.8 shows difference of stresses in

the continual model and the discrete model in which the total number of discrete elements is i:

Nk-Nd'i I00%,

AN(i) : Nk

where Nd,i is a value for the discrete model in which the total number of discrete

dements is i,

NK is the value for the continual model.

The graphical representation evidences that the model with an insufficient total number of

longitudinal elements has greater maximum stresses as compared with the data from the

continual model; the higher the discretization degree, the less the difference in stresses.

Replacing the sheet with 6 to 8 discrete elements ensures a practically sufficient accuracy

of the analysis based on the discrete model.

Inserted adhesive joint of a composite sheet and an aluminum sheet

Consider a symmetric joint of two sheets (Fig. 3.9). Initial data may be seen in

Table 3.4.

Due to the symmetry we have Ayo = Ayk = A----YL = 0 and yo = q)o = Mo = Qo = 0. The

self-equilibrium correction from (3.8) and (3.10) can be written as
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o°tx,i = FI

FII

for the composite sheet

for the aluminum sheet

(3.29)

Here, Fl is the area of the composite portion in the joint and Fu is the area of the

aluminum portion in the joint.

Equations (3.5) and (3.6) are utilized to compute other components of the correction, and

equations (3.12) - (3.14) are employed to calculate coefficients A, B, and C. The result is the

following differential equation for determining the function X(x):

;(iv _ 2×0.515 _" + 0.0543 X = 0.

Roots of the characteristic equation are real: rt=-r2=0.987, r3=-r4=0.237.

The general solution to the differential equation looks like this:

Z(x) = Dl Ch(rlx) + D2 Sh(rlx) + D3 Ch(r2x) + Da Sh(rzx) •

Di are arbitrary constants to be determined on the basis of boundary conditions.

Boundary values of the function X(x) and its derivative are established by nullifying the

stresses ox and Xxy at the free edge of the composite sheet (x=-l) and the aluminum sheet (x=l):

P X'(-I) = 0 ;x(-0 ,
(3.30)

FII P X'(1) = 0.
7,(1) = VII-Vi

After substitution of values of the function and its derivative into boundary conditions we

obtain the following expressions for the constants:

P( FII ) ShY2
D 1 =-_k.--F_- 1 vii - Vl rlShy 2 Chvl - _ Shy 1 Chv2

- r2

D2 =-_k,F I VII - VI Shvl Chv2_ rl ShY2 Chvl
r2

D 3 - - VII - _I
2F \ FI r2

Shy 1

Shy 2 Chvl rl Shvl Chv2
r2
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D 4 - =
2F\ FI

r_
VII- qJl r2 Shvl Chv2---

Chv 1

rl ShY2 Chvl
r2

where vl=rll, v2 =r21 •

Having the _((x) function determined from equations (3.7), all components of the stress

tensor can be found. Figure 3.9 shows profiles of shear and normal stresses in the adhesive layer

for joints with differing lengths.
Increasing the length of an adhesive joint is feasible to a certain limit only, since stresses

in adhesive do not decrease in too a long joint.
If stiffnesses of sheets in a joint differ (EIFI _ EnFn) then stresses in the adhesive at

opposite free edges also differ; the higher the stiffness of an element, the higher the maximum

stress in adhesive at the end of the element.

Inserted multilayered adhesive joint

The method developed for analyzing the simple inserted adhesive joint is well applicable

to analysis of the multilayered adhesive joint.
• Consider stresses in a multilayered symmetric joint of sheets made from composites and

aluminum. A schematic of the joint is demonstrated in Fig. 3.10a; Table 3.5 provides initial data

for calculation.
The model includes 24 strips, a corrective function is adopted in accordance with (3.29).

Figure 3.10b represents stresses O°x, Z°xy and 0y. Further, equations (3.12) - (3.14) are involved

to determine coefficients A, B, and C.

The differential equation for the function _(x) in this example is of the form

iv _ 2 • 0.0782 )C" + 0.0152)C = 0.

Roots of the characteristic equation are a complex conjugate

rl=0.318, r2=0.15.

pair, +(rl + rED; here,

The solution to the differential equation is

_(x) = DiCh(rlx) Cos(r2x) + D2Sh(rlx) Cos(r2x) + D3Ch(rlx) Sh(r/x) + D4Sh(rlx) Sin(r2x).

Boundary conditions for establishing the arbitrary constants coincide with relations

(3.30); introducing therein the function X(x) and its derivative, we obtain formulas for

establishing the arbitrary constants.
Shown in Figure 3.10c is variation of shear stresses along the most severely loaded

adhesive layer (web 5); Fig. 3.10d presents distribution of shear stresses Xxy over the vertical

extent of the section where the stresses are at maximum. For comparison, these plots are having

the profiles (refer to dashed lines) of stresses in the adhesive joint with the same sheets but

made as a "simple inserted joint."
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The inserted multilayered adhesive joints enables decreasing the stress level for elements

in adhesive joints, thus shortening the joint.
Distribution of stress resultants between the adhesive layers in multilayercd adhesive

joints is not uniform; the present analysis method makes it possible to determine real stress

fields in adhesive joints.

Adhesive lap joint with two identical sheets

A lap joint may be modeled by a bar whose elastic axis has discontinuity at sheet ends.

Consider an adhesive joint of two composite sheets; a schematic of the joint is demonstrated in

Fig. 3.1 la, and Table 3.6 provides initial data for calculation.
Locate the co-ordinate system origin at the central point of the lap area. Assume Ay0=0.

Equations (3.1) may be utilized to determine initial parameters; thereafter we can compute

strains and forces/moments in the joint (Fig. 3.11b).

The analytical model incorporates 6 longitudinal elements for each sheet. Having

determined the correction functions and coefficients A, B, C, and B1, we arrive at the following

differential equation for determining the function X(x):

1.246 xlv. 15.497 _" +3.866 _ = 0.009 Sh(0.0285x) •

The joint is asymmetric, therefore X(x) = -;_(-x); so the general solution to the equation

may be writtcn as

X(X) = D2 Sh(rtx) + D4 Sh(r2x) + Do Sh(Klx) •

Arbitrary constants D2 and D4 are determined on the basis of boundary conditions for the

free end (x=lc) that correspond to relations (3.25) and (3.26).

Figure 3.11 represents diagrams of shear and normal stresses in adhesive joints with

various lengths.
If an overlap area is short, the total bond area is insufficient, and shear stress is high

throughout; increasing the overlap length decreases the shear stress, and stress distribution

becomes nonuniform, with stresses showing peaks near the free ends. Increasing further the

overlap length makes the shear/normal stress peaks get notably lower, thereafter intensity of

reduction of maximum stresses in the adhesive layer gets slower; lastly, in rather long overlap

areas, the maximum stresses do not always depend on the overlap area length.

Adhesive lap joint with two arbitrary sheets

Assume that the overlap area length enables employing the local correction hypothesis.

To determine the basic solution, the structure may be modeled by a bar whose elastic

axis has two discontinuity points: the left-hand end (x = -XL) and the right-hand end (x = XR)

(Fig. 3.12).
Making use of (3.1) and (3.2), we determine initial parameters and forces/moments

applied to the ends. Thereafter, two correction functions are introduced and, in accordance with
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the local correction hypothcsis, the problem is solved twice - for left-hand and right-hand parts

in separation.
After the relevant transformations, wc obtain two independent differential equations for

left-hand and right-hand parts of the joint:

EL _L IV " BL _,"L + AL _,,L = QIy,L B1L,

CR _,Rw - BR _"R + AR _R = QIY,R B1R,

-XL -< X --< 0 ;

0 <_ x < XR • (3.31)

Solutions to these equations with boundary conditions (3.24) - (3.26) arc provided by

(3.28). With functions XL and XR established, the corresponding relations are employed to

determine stress components for any point in the joint.

Considered as an illustration may be an overlap joint of sheets made from carbon fiber

reinforced plastic (CFRP) and aluminum. Data necessary for the analysis are in Table 3.7.

Determine co-ordinates of the neutral layer for each portion of the structure and establish

the jumps of the elastic axis:

Ay L = 0.8535 M , Ayv = O, AyR = 0.7465.

Equations (3.1) and (3.2) are source of initial parameters and end forces/moments

necessary for subsequent calculations. Thereafter the correction stresses are computed for left-

hand and right-hand parts of the joint in separation.

Figure 3.12 shows variation of normal and shear stresses in the adhesive layer, as well as

diagrams of stresses Cx, _y and "Cxy for certain cross sections.
If an adhesive joint incorporates several sections with free ends of sheets, each section

introduces a correction function. In a general case we should allow for interaction of the

correction solutions; this noticeably complicates the overall problem. In certain cases the

situation may be simplified by using the local correction hypothesis. The latter is valid in the

case that a distance ALi,i+l between neighboring sections with free ends is rather long; in

practice the "interaction" of the ends can be neglected if

5 (3.32)

ALi,i+ 1 = xi+ 1 -x i > _ ,
rrnin

where rmin is the minimum root of the characteristic equation (3.19).

The relation (3.32) is also a criterion for specifying a rational overlap length in an

adhesive joint.
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3.3. Finite-element model for analyzing the irregular adhesive and mechanical joints between
composite parts

In recent years a considerable progress has been achieved in computing tcchnologies and

analysis methods. However, the variety of joints is very large due to differences in structural

shapes and manufacturing processes; therefore the immediate analysis by means of

elasticity/plasticity theories and fracture mechanics is a notable difficulty. So the effective

method for analyzing the joints is to combine these methods and the engineering methods of

structural mechanics.

The present model (Fig. 3.13) includes

a) an analytical model of discrete joints,

b) an analytical model of adhesive joints, and

e) an analytical model of three-dimensional joints.

The first two models are for estimating the two-dimensional objects and may be used to

analyze thin-walled wing/fuselage components at the design stage, for estimating the repair after

in-service damage, or when bonding the reinforcement doublers (whose edges are attached by

bolts or metal needles). The bolt force allocation derived may be utilized in boundary conditions

for analyzing the most severely loaded area by means of the three-dimensional model (see item

c) above). In addition, the three-dimensional model can be employed independently, to analyze

stress-strain states (and estimate the strength) of composite .joints transferring large concentrated

forces.

3.3.1. Joints with discrete bonds

Resolving a structure into components results in appearance of additional parts, an

increase in weight, and a decrease in structure service life due to tendency to failure from

fatigue under variable loads. The aircraft industry undertakes attempts to decrease the number of

.joints by introducing extruded panels, one-piece forged units, etc. However, this cannot

"eradicate" .joints because these are required due to many circumstances. On one hand, we must

attach members made of diverse materials, envisage convenient installation/maintenance of

assemblies; on the other hand, reasonable articulation simplifies production, makes a structure

"more workable", and reduces manufacture costs.

There are a number of papers dealing with calculation of force distributions in

bolted/rivetted joints, see, for example, contributions by P.A.Stepin [5], L.E.Jarfall [6]. Both

elastic and elastoplastic formulations were studied. These investigations are usually to joints that

may be considered as one-dimensional. In sophisticated assemblies such approach may prove not

to be acceptable at all. Therefore, to analyze complex 3D bolted/rivetted joints, we suggest a

method based on the following assumptions:

1) a structural material is elastic;

2) friction between parts is neglected;

3) in small-size areas various solutions may be superposed.

Of course, this approach at present has some disadvantages, since it does not "see"

friction between sheets in a stack, does not account elastoplastic behavior of materials. None the

less, it is quite suitable for strength evaluation and can be used to predict the service life.
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In estimation of load-bearing capability of a joint, an important stage is determination of

local strcsscs near fasteners: tensors may be computed by solving immediately the three-

dimensional contact problem with correction for friction and plasticity -- this is a very difficult

problem. However, the local stresses around fasteners may be assessed using the superposition

principle. In so doing (see [6]), the local stresses are resolved into - stresses caused by a force

"going around" a fastenerand - stresses transferred by a fastener (Fig. 3.14):

IOloc = ot 13 KI-_-0o + K2

where K_ the factor of concentration with respect to the nominal bearing stress from the force P,

K2 the concentration factor for a gross section loaded by the stress resultant getting around the

fastener, d the hole diameter, t the sheet thickness, 0,, the coefficient for taking into account

the local increase in stresses that is due to deformation of the fastener, ot the coefficient

accounting for the hole condition (including the surface roughness, residual stresses from cold-

work hardening, etc.), 13 the factor introduced to correct the result for interference between the

fastener and the hole.

Values of coefficients K 1 and K 2 are to be taken from plots in [7]; the coefficients 0o,

c_, and 13 are usually obtained by experiment. When performing a qualitative estimation of a

joint's concept, these coefficients may be set to 1.

Point-like links, such as rivets, bolts, and welding spots, are modelled by springs. In such

an approach, various relations (within a general assumption of elasticity) between displacements

of fastener points 8p and the shear force P are used:

8p=C P

C is a fastener compliance coefficient.

A large amount of theoretical and experimental studies were performed to evaluate the

fastener compliance coefficients [9-11]. According to Rosenfeld [11], the compliance of a

double-shear joint should be evaluated on the basis of a sum of displacements due to

- bearing of a stack (Sbs),

- bending of a fastener (Sbf), and

- shear of a fastener (Ss):

1 1 1 t___pl6bs = P _---+ + ;
2 tdEb tpEb 2 tdEd

8bf=P (8t_ + 16t_ tp + 8td @ + t_)/(192Eblb) ;

8s=P (2td+tp)/6GbFb.

(3.33)

Hcre, Fb is a fastener cross-sectional area, I b is a fastener cross section moment of

inertia, t dcnotes thicknesses of components; subscripts d, p and b are respectively for the side

plate, the central plate, and the fastener.
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Table 3.8 comparcs analytical complianccs Can and cxpcrimcntally obtained values C_,,.

The first group of three lincs is for joints of steel parts. The fourth line is the joint in which a

plate is made out of aluminum alloy [9]. The fifth line of Table 3.8 reports the thcorctical

compliance Can and experimental data for a double-shear structure whose parts arc made from

acrylic plastic. Relative difference between analytical and experimental results evidences that

these equations for computing the compliances can be recommended for practical analyses.

Note that this problem statement assumes that the bolt is represented by a single node in

a finite-element mesh of each part in the build-up structure. This can lead to differing solutions

to the problem on meshes with different numbers of nodes.

These circumstances have been a reason to conduct additional studies to evaluate how

much the components of the main stress state (the forces transferred by bolts) are influenced by

the singularity at the load application point when the bolt bond is approximated as a single

point. The main stress state of a three-row bolted joint (Fig. 3.15a) was obtained on meshes

differing in thc discretization degree. Figure 3.15b demonstrates the results. Solid lines depict

variation of the relative value of the force in the edge bolt, assuming zero compliance (C=0,

rigid fasteners) and a real compliance (C_ 0, elastic fasteners); the finite-clement meshes differ

in a relative cell size l/d around the loaded point (here, 1 is the mesh step length). Shaded bands

contain solutions obtained from finite-element meshes with nxn division with a multiple-point

approximation of the bolt (nodes falling into the circle with a diameter equal to the bolt hole

diameter approximate the bolt). From Fig. 3.15 it is seen that scatter in relative values of the

force transferred by the edge bolt does not exceed 5%. If the fastener is approximated by a

single point a solution with the same accuracy may be obtained by using a ratio l/d>l.8.

Thc prcscnt relations have been implemented in the FITING program package [12] for

automatically computing the bolt/rivet compliance. The compliance calculation techniques are

known to be subject to further improvement, therefore FITING incorporates options for

immediately specifying the compliances C (for example, those obtained by means of [101). The

relation (3.33) has been derived assuming that a load distribution along a bolt in a double-shear

joint is uniform. Nonuniformity of the load distribution for some types of joints is taken into

account in formulas of [10]. The above superposition and the calculated general stress-strain

states and force distributions were used to compute local stresses in the joint of Fig.3.16.

The structure is a butt joint of two aluminum wing panels reinforced by a quasi-isotropic

composite doubler attached by steel screws to the panels and the internal flange. Due to

symmetry the analysis covered a fourth part of the structure, including the left-hand half of the

scheme in Fig. 16a. Bolt rows are numbered successively from 1 to 3 (Fig. 3.16f); relative

forces P of the bolts are shown in Fig. 3.16b. Table 3.9 represents computed stresses at bolt

holes in the skin and the doubler. It follows from the Table that maximum local stresses in the

fastener zone arc around screws 1-1 and 2-1. It has been in these areas that cracks appeared

during fatigue testing.

Stress concentration factors are computed as

(C_loc)max/
Kcr = / C_gross

Here, w is a structural width, d is a screw diameter, t is a thickness; indices s and d are

to the skin and the doubler.
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Thus, the results of analyses of boitcd/rivetted joints by the present technique arc

validated by experimental data from fatigue tests in respect of prediction of both thc points and

sequence of crack formation; hence, the technique is currently suitable for qualitative cstimation,

and further development is anticipated to improve it to quantitatively evaluate joints.

3.3.2. Joints with continuous bond

With advent of high performance adhesives and the corresponding assembly procedures

the adhesive joints are more and more widely used in airframes. Perspectives are seen to utilize

adhesives to mount high strength doubler for mitigating stress concentration in structures with

cutouts; this undertaking may be envisaged both at a design stage and for strengthening the

existing structures. However, the doublers can hamper visual inspection of main parts, thus not

allowing operators to detect microcracks; therefore the analysis proccdure is required to be

accurate. The information available from the up-to-date literature is mainly to stresses in vertical

cross sections, and stress profiles over horizontal planes are left without attention.

The present Section is an attempt to provide a tool for estimating the influence of an

adhesive bonded doubler on elastic stresses along an edge of a circular cutout. Both a main plate

and a doubler are assumed to be manufactured out of thin sheets and comply with plane stress

state hypotheses of the theory of elasticity. In addition, we assume that the structure is subjected

to inplane loads and does not buckle.
Let us subdivide the structure into substructures so that either the doubler as a whole or a

part thereof be one substructure and the panel or a part thereof attached to the doubler be the

other substructure. Each substructure is further resolved into finite elements.

Interaction of the plate with the bonded doubler may be accounted for by introducing the

shear-tie elements shown in Fig. 3.17; these include compliances of both the adhesive and the

flat components in the vertical section. By analogy with a tension rod the relation of nodal

forces {Txi, Txj} to Ox displacements {ui, uj} may be written as

TxjJ C -1 l_lLujj
(3.34)

In (3.34) the 1/Ci is a compliance coefficient which is meant as a mutual displacement of

points in midplanes of panels and the doubler under the force Tj=I. The displacement of the

doubler with respect to a panel may be described by the equation

an Gp a3 Ga a4 Ud

where _xz= Wxz/V_;an=a1 for two-sided doublers, and an=a2 for a doubler bonded on one surface;

Gp, Ga, and Ga are shear moduli of the plate, the adhesive, and the doubler, respectively; Fi is

the shear-tie element cross-section area (in the OXY plane).

We are allowed to assume that the shear stresses are maximum in the adhesive and

vanish at free surfaces and at a plate symmetry plane in the case of two-sided doublers [12].
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This shear stress distribution may bc approximated by parabolas (Fig. 3.17) to give an estimate

of the stiffness coefficient Ci:

Ci=
F i

t a 11 t d1 t p_+__+ ....

3"Gp G a 24 G d

for the two-sided reinforcement and

El=
Fi

t a 11 tp t d
-- + .... ( + --)
G. 24 CJ-p G a

for the one-sided reinforcemcnt. Here tp , ta and td are thickncsscs of the plate, the

adhesive, and the doubler, respectively. Shear in the OYZ plane can bc accounted lbr in a

similar way.

Summing the stiffnesses (3.34) up with the coefficients of the plate stiffness matrix and

taking account of boundary displacement conditions, we derive a linear system of constitutive

equations

for the joint; {R} and { 6 } are vectors of nodal forces and displacements, respectively; [K] is

the stiffness matrix.

Thereafter the shear strcsses in the adhesive laycr are

"ta = Xlz +'tyz

where

C i Ci
_:,xz = "-_--(Uj- Hi), "tyz = --_--(Vj- Vi),

ri ri

u i and v i are displacement of the plate and the doubler along the OX and OY axis.

Figure 3.18 shows a finite-element model of a plate with adhesive bonded doublers and a

central transverse crack. Due to symmetry with respect to the OX axis the analysis addressed a

half of the structure. The plate, doubler and adhesive layer have meshes with quadrilateral

elcments with linear approximation of displacements. The plate is assumed to be manufactured

out of a 3.2 mm thick aluminum material. The composite doubler is from 0.1 mm dia. boron

fibers with epoxy resin binder. The adhesive thickness is 0.1 mm. Elastic constants for the

aluminum alloy arc the elastic modulus E of 68.4 GPa and the Poisson's ratio I.t=0.318; boron

fibers: E1=197, E2=14.5, G=5.22 GPa, la1=0.168, g2=0.0124; adhesive: E=l.9 GPa, I.t--0.35.

Figure 3.19 represents distribution of strain e x along the line {y=0} in the plate and the

doubler; data from strain gauges bonded to the external surfaces of the plate and doubler are

given for comparison's sake. The results evidence the rather high accuracy of the computation
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method for determining strain fields in similar structures and estimating thc stress intensity

factor.

Figure 3.20 dcmonstrates thc influence of the composite doublcr thickncss and layup

pattern on the stress intensity factor K_ in the plate with a central transverse crack. The fracture

mechanics solves problems with arbitrarily oriented through cracks by using the virtual growth

method [13]; according thereto, the mode I (opening mode) and II (sliding mode) stress intensity

factors KI and Kli, respectively, are computed as

+ -
(3.36)

by changing the crack tip position (along the crack path) by a length s and turning the tip

through the angle 0. In (3.36) E is an elastic modulus, [K] is the structure stiffness matrix, {8 }

is the nodal displacement vector. The structure is modeled with triangular simplex elements:

errors depend on element size, see estimates in [13]. From Fig. 3.20 it is clear that the doubler

notably affects the stress intensity factor Kl: the doubler with a relative thickness of 0.0625

reduces KI by a factor of almost three.

Generally, a composite doubler may comprise several layers, each with its own direction

of orthogonal principal axes; elastic constants of a doubler can be determined from relations of

[8]. Various layups (see Fig. 3.20)provide almost identical effects. But the [O/+45°]_nd

[0/+90°]1 layups have better characteristics in the transverse direction, so these patterns are

recommended for use. It is known that layers in composite materials may delaminate; therefore,

such repair on an aircraft should for reliability be finished with riveting a doubler. Figure 3.21a

shows how the stress intensity factor Ki in a transversely cracked plate reinforced with a

composite doubler depends on the doubler thickness. Three types of joint are considered:

adhesive, riveted, and riveted with adhesive. A rivet diameter of 3 mm is selected so as to

ensure an equally strong joint. Rivets are shown by circles. From the Figure it is clear that a

riveted joint is less efficient than adhesive bond; rivets in addition to adhesive do not almost

reduce the stress intensity factor. Figure 3.21b compares efficiencies of doublers made of a

composite material, aluminum, and steel. The most notable reduction of thc strcss intensity

factor is attained with the steel doubler. The composite doubler is slightly less efficient, and the

aluminum one greatly weaker. Dashed lines demonstrate variation of the doubler mass M as a

function of a doubler thickness. As to the structural weight saving concern, the composite

doublers should be preferred.

3.3.3. Allowance for three-dimensional features in joints

Applicability of theory of elasticity methods to investigation into structural behavior was

significantly augmented recent years due to development in numerical analysis techniques which

allow geometry of structures to be described quite fairly; also, increased memory/FLOPS

capabilities of computers allow researchers to effectively employ the FEM when concerning with

contact problems in 2D and 3D.

The constitutivc cquation of the assumed displacement method for a discretized domain

co, based on minimization of the Lagrangian functional, is
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[K]{s}={R} (337 

using a nodal displacement vector {5 }, an external load vector {R}, and a structure stiffness

matrix [KI. For solving system (3.37), one should specify for a part of the domain co the

boundary displacement conditions (or "kinematic" boundary conditions)

5 = U o (3.38)

Let us consider two bodies of arbitrary shapes (i and j are indices to identify the bodies)

in Cartesian coordinate system XOY (Fig. 3.22).

Let Sic and Sic be assumed surfaces of contact, i.e. those portions of the bodies i and j

which are close to each other and have points which can interact. Assume that the surface Sic at

every point Cik (k is a point number, k=l, 2 .... ) has an outward normal ntk which intercepts the

surface SiC at the point Cjk. Such points Cik and Cjk will be referred to as conjugate points. As

noted in [14], conjugation of points can only be determined with a fair degree of accuracy

before solving the problem in case of an obvious pattern of contact deformation. Otherwise, the

contact area will be outlined after operation of an algorithm based on criteria of mutual non-

penetration of bodies. Introduce radius vectors rikand rjk to identify initial positions of the points

Cik and Cjk, respectively (Fig. 3.14). After loading, the positions of these points in the plane will

be defined by the relations

(3.39)

where {Sik } and {Sjk } are displacement vectors of the conjugate points.

The criterion of contact of the points Cik and Cjk can be written as

/ - 0 (3.40 

where Sc is a contact surface.

Considering eqs. (3.39), from relations (3.40) we obtain a compatibility condition:

({rik }- {rjk })" {nk } = ({Sjk }-{Sik })" {nk } c.es, (3.41)

For conjugate non-contacting points the following condition should hold:

({rik }-{rjk })" {nk } :< (_ c_ (3.42)

which, in essence, expresses the condition of mutual non-penetration of bodies. In the projection

on the normal nik the condition (3) will be written as
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8_) +8(on) =8_) (3.43)

where 8!1_) and 81_) are displacements of conjugate points of the bodies i and j along

the outward normal; 8(on) is the initial interference (the minus sign in (3.43), or gap, the plus

sign) between conjugate points as measured along the normal nik.

The equations of equilibrium of isolated bodies i and .j (with no contact bctween them) in

the matrix notation are

Ki11 Ki'2]ISill = {Pi t
Ki21 Ki22J[Si2J Qi

Kjll Kjl'_II8
Kj21 K j2;J[8 i12} = {QJj}

(3.44)

where 8il and 8jl are displacements of the nodes that do not touch each other; 8i2 and 8j2 are

displacements of the conjugate nodes; Pi and Pj are prescribed external forces; Qi and Qj are

contact interaction forces to be sought for. We may perform the Gaussian elimination to write

eq. (3.44) in terms of the unknown displacements of the contacting nodes:

[K; ]{8 i } = {R i }

(3.45)

where

(3.46)

Assume that between k-th conjugate nodes of the i-th and j-th substructures a link exists

that, in a local coordinate system, may be expressed as

(3.47)
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where

8ikandSjk arc displacements, Qik and Qjk arc contact forces acting on thcse conjugate nodes.

In two-dimensional problems,

o1[c] = c_

and in 3D ones,

C n 0 0 1
[C]-- 0 C_ 0

0 0 C n

(3.49)

where C n, C_, andC n are stiffnesses of the links as considered in the local system.

Let [ _,] be a direction cosine matrix that relates the local system { n,_,rl } to the global

one {x, y, z}.

By summing eqs. (3.45) and (3.46), obtain equilibrium equations for the bodies:

[K i ]+[7°1 -[7 ° ] 8i = Ri

l -[r°] [Kjl+[,/o] 8j Rj

(3.50)

Coefficients of the matrix [7°] characterize the link stiffnesses in the global coordinate

system; they are

1"/kij] = [MS[C][M
(3.51)

If the structure is subjected to interference (quantified by a vector {8o}), one should add

to the right-hand side of eq. (3.45) the component

{Ro} = [Ki]{8o }
(3.52)

If the bodies under study do not touch each other ([7°]=0) the relations (3.50)

transform:

I[_ 1 0 1jsi_ [-[Kill]-l{pi}l=l '
(3.53)
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They can be resolved with respect to unknowns {6 i } and {6j }.

Of course, we assume here the general case - the body i is in contact with the body j.

The set of simultaneous equations (3.50) would be solved using the following algorithm:

1. Specify preliminarily the contact nodes, assign the stiffness matrix [Cik].

2. Prepare the direction cosine matrix [_. ].

3. Compute the stiffness matrices for substructures

according

4.

Gaussian

5.

to (3.44).

Transform eqs. (3.44) to equilibrium equations

elimination procedure.

Employ (3.43) to determine the interference 5 R (along the normal)

and the right-hand side vectors

for contact nodes by using the

11 n

6R=Sj-6i -60

6. Compute the forces R applied to the substructure i because of the interference 5R:

R=[Ki]{ 6 a };

this vector must then be added to the prescribed external load vector of the substructure under

consideration.

7. Use relations (3.51) to transform the link stiffness matrices to the global coordinate

system; add these matrices to the structure stiffness matrix (3.50).

8. Use (3.50) to determine displacements of contact nodes { 5 i } and { 6 j }.

9. Determine the contact forces along normals by using relations (3.52):

Qk = Ckk(5_ -5_) (3.54)

10. Analyze the non-penetration criterion (3.42). Go to the item 11 below if eq. (3.42) is

satisfied, otherwise repeat the solution from the item 5.

11. Finish evaluating the displacements of contact nodes; carry on with usual procedures

of the Finite Element Method.

The above algorithm is not difficult to use to take account of friction forces Qfr on the

contacting surfaces: after the item 9 these forces may be estimated by

Qfr = -I-tf × signS_ Qk
(3.55)

(here I-tf is a friction coefficient, 5_ is a displacement along a _ axis), then added to the load

vector. However, such approach need be validated by treating realistic problems.

The present technique for contact problems is a simplified means, since the constitutive

equations (3.50) incorporate complementary stiffnesses described by eqs. (3.49). The normal

component Cn models a contact layer. Tangential components C_ and C n seem to be uscful for

modelling the friction forces and/or for simulating behavior of adhesives, etc.

It is clear from eq. (3.54) that the Cn should be specified at a relatively high level, so

that the difference of displacements be small as compared to each of the displacements. On the

other hand, after specifying too large a C,, we will suffer from the round-off errors not allowing
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the contact forces Qic to bc detcrmincd accurately. Thc rcquircd value of C, was cstimatcd by

means of parametric studies. Consideration was given to interaction of two clamped plates of

uniform thickness t=l madc of a material with a Young modulus E=I and Poisson's ratio I.t=0.3

(Fig. 3.23). The geometric size of the plate i along the OX axis exceeds that of the plate j by

a magnitude of interference 80=2. For simplicity's sake the example involves dimensionless

characteristics. The interference above causes uniform stresses _x,exact=-0. l. In the present

analysis each of the plates is modelled with simplex finite elements with type 5x5 meshes. The

parameter Cn is parameterized by the equation Cn=ExlO N where N is assumed to be varied

from 1 to 12. Figure 3.23 represents thc calculated stresses as a function of thc parametcr N.

This plot shows that two true digits in stresses are ensurcd by N equal to 2 thru 8, with the best

results corresponding to N from 4 to 6.

3.3.4. Some results of computational analyses

Figure 3.24a depicts a mesh of a cylinder with two pistons which apply a force P=60 kN;

this combination models a power cylinder of a commonly used booster (Fig. 3.24b). The model

is composed of simplex axisymmetric triangular elements. The total number of unknown

displacements is 1298; the contact problem is limited to investigation of 44 displacements of

nodes on the contact surface. Axial stresses cx on the internal and external surfaces of the

cylinder are shown in Fig. 3.24c; they are compared to the test data got from strain gauges of 5

mm gauge length.
Consider interaction of a usual lug with a bolt (Fig. 3.25). Both the bolt and the lug are

modelled by tetrahcdrons. Symmctry allows us to treat a one-fourth of the global model; the lug

is covered by 500 nodes, and the bolt, by 684 nodes. The total number of displacements to bc

found is 3552. The load _ =74 MPa is applied to a lug section at X=0 and is transferred to the

bolt that outstands from the lug as far as half a lug thickness. Wc assume that the bolt is

scparatcd from the lug by a gap 8 =0.05(1-cos0 ). Figure 3.25 represents the contact stresses as

a function of the angle 0 in the lug sections at Z=0 (a "middle section") and Z=40 mm (a

"limiting section"). Thesc stresses are compared to the results of [3.15] for a two-dimensional

problem. It is seen that the data differ not only in values but in trends. The minimum contact-

stresses are in the middle section, and the maximum ones are seen on edges of the lug hole; this

indicates the bolt being deformed in the 0XZ plane.

The other example is the propfan blade root loaded with stresses due to inertia of a

blade. Currently, our design bureaus develop spar-based constructions (Fig. 3.26). Such a

concept provide weight savings and is very reliable in service. It includes a structurally

significant item -- the root where a polymer matrix composite is coupled with a metallic fitting.

A schematic of the model is depicted in Fig. 3.27.

The fitting is made of 40KhNMA steel with E=210000 MPa and t.t=0.3. The VPS-20

composite utilized in the blade has a radial Young modulus El=20000 MPa, an axial modulus

E2=46000 MPa and a tangential modulus E3=12000 MPa; the shear modulus is G=3600 MPa,

and Poisson's ratios are _t12 =0.27, _t23=0.25 and la31=0.25.

The model in Fig. 3.28 comprises 11 substructurcs with a total number of unknown

displacements of 2556. The structure was subjected to axial tension caused by the blade body
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forces. In the course of analyses the load was incremented by steps of I(K)O(O) N from 10(O)00

to 400000 N, and the domain of contact between the root fitting and the composite part was

outlined; the interaction force was evaluated. Friction between the parts was assumed not to

exist. Analyses showed that the contact domain does not alter over the whole of the load range;

the number of iterations for outlining the contact domain (with a load fixed) was 4 at the first

step and 2 at the last step.

Figure 3.29 compares radial interferences (a solid line) with test data (Table 3.10)

received from dial indicators (Fig. 3.30) measuring the diameters of certain cross sections under

the applied load of 200000 N.
For an article with a thin rubber layer the results agree well. The dashed line in Fig. 3.29

depicts the radial interferences obtained by analysis for an article where the composite and the

fitting are assumed to be adhesive bonded. Figure 3.31 shows axial profiles of internal

longitudinal forces in the two structural components.

Table 3.11 represents verification of equilibrium conditions for contact force projections

on the main axis:

n

P = _--'N i sina i
i=l

where P the axial load applied to the unit, n the number of contact nodes, Ni the contact

interaction force in a node i, a i the angle of slope of a collar at a node i (measured from the

•main axis).

The maximum tensile stresses in the composite part are seen on the external surface near

the fourth collar of the fitting. At a root of this collar, but in the fitting, one can see significant

axial normal stresses of 200 MPa.

Structural concepts of joints with composite parts are very diverse, depending on both the

application area and the manufacturing process. In particular, concentrated loads from metal

parts may be transferred to composite panels by means of joints demonstrated in Fig. 3.32.

The concentrated load P is transferred via a steel bolt (4) with the aid of the metal

bushing (2) to the composite panel (1). The bushing (2) comprises two parts that are screwed

and cemented to the panel at the outer surface.

The bolt and the bushing are made out of steel with the Young's modulus E=2000 GPa

and the Poisson's ratio la =0.3. The panel material has the following characteristics:

E×=50 GPa, Ey=16 GPa, Ez=20 GPa, Gxy=5.2 GPa, Gyz=0.8 GPa, Gzx=0.8 GPa, I-txy=0.27,

_yx=0.23, _zx=0.23.
The analysis of the symmetric structure was limited to two octants: XOYZ and (-X)OYZ

(Fig. 3.32). Kinematic boundary conditions relevant to the symmetry were specified; in addition,

the left-hand edge of the panel was fixed. The load P/2 was applied as a distributed shear stress

x=P/2F at the upper plane of the bolt (F is the bolt sectional area). The analytical model

comprised five substructures with the total number of unknown displacement being equal to

5961. Three versions were considered. In the first, the panel hole and the bushing were assumed

not to be bonded with adhesive, so their surfaces contact freely, with no friction. In the second

version, the bushing was assumed to be cemented to the panel by a no more than 0.1 mm thick

adhesive layer whose elastic modulus is 2.5 GPa. In the third version a steel panel (E=200 GPa

and t-t=0.3) with no adhesive was addressed.
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The contact area was outlined, and the negative pressurc condition met, for 5 itcrations in

the first and third cases and for four in the second case.

Figure 3.33 presents tangential stresses over the internal surface of the bolt hole: these

are referred to the bearing stress _b=P/td (where t is the panel thickness and d is a hole

diameter) and compared to stresses in a similar structure in which all parts are made of steel.

The external load is such that ab=200 MPa. From the pressure profiles it is seen that

orthotropy of the composite material makes the stresses more nonuniform along both the

circumference and the bushing axis (sections A and B); the circumferential stresses in the

composite part are increased by a factor of 1.65 as compared with metal. If the bushing and the

composite part are coupled with an adhesive with high elastic properties (the shear modulus

Ga=2500 MPa) then the circumferential stresses over the composite surface get notably reduced

(versions 1 and 2 in Fig. 3.33).

Consider a plate loaded with two tension forces P applied via two bolts (Fig.3.34). The

real structure is a 180 by 48 by 2 mm plate made out of KMU-4E composite with the [0/45/90]

layup. It has two 12-mm holes wherein the steel bolts are inserted to apply the external forces P.

The bolts are torqued (via nuts laid on washers) to a moment M that generates an

internal tension force Q. In experiments, three cases of fracture of the specimen loaded with

Q=0, Q=17500 N, and Q=35000 N were considered. Bolts were made of 30KhGSA steel with

the modulus of elasticity E=200 GPa and the Poisson's ratio l.t =0.3. The plate is composite:

E1=60 GPa, E2=60 GPa, E3=60 GPa, GIZ=14 GPa, G23=14 GPa, G31=14 GPa, ta12=0.35,

_t23=0.35, _3t=O. 15.

The analytical model, due to symmetry, was 1/8 of the entire structureand consisted of

three substructures: one modeled the bolt and the other two substructures represented the

composite plate. The total number of nodes was 800; the number of displacements, 2400; and in

contact were 204 nodes.

Figure 3.34 shows dependence of the maximum plate tangential stress c_0 on the force P

at the friction coefficient laf =0.15. It is easily seen that increasing the clamp-up force Q reduces

the stress _0. If one knows the allowable stress [_] (from Fig.3.34) then Fig.3.35 may be

used to determine the ultimate tensile force [P].

Taking into account instability of properties of composites, the ultimate forces in Fig.

3.35 are given for two values of allowable stresses: [_]=333 MPa and [_]=400 MPa. Also,

ultimate forces P obtained in experiments are shown. The experimental values in Fig. 3.35 are

seen to be in good agreement with stresses computed at [_ ]---400 MPa.

Figure 3.36 demonstrates variation of the maximum tangential stress _0 as a function of

the friction coefficient at fixed values of the clamp-up force Q (17,500 N) and the external load

P (11,250 N). Increasing the friction coefficient reduces the stress, and the maximum value turns

out to be at deeper points of the plate.
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4. Conclusion

In compliance with NCCW-73 specifications the TsAGI and MGATU have fulfilled a

research work in two areas: "Analysis of postbuckling behavior of composite panels" and

"Development of general model of joints in composite structures".

The following major results have been provided:

- a theoretical solution to the problem on postbuckling behavior of a composite plate

under multiaxial load in the case when a wave type can change over in the course of

postbuckling deformation;

- relations that describe (1) stiffness reduction coefficients for a buckled skin in a

stiffened composite panel and (2) load-bearing capability of the panel under biaxial compression

and shear;

- a method to analyze thc commonly used types of adhesive bond areas in composite

structures, assuming that thc adhesive layer bchavcs linearly;

- a model for analyzing irregular adhesive/fastener joints in composite structures; some

joints were analyzed by using finite element methods.

Proceeding from objectives of the Cooperative Agreement NCCW-73, work status and

technical appropriateness, we propose the research to be extended to cover the following

problem areas:

allowance for temperature difference between stiffeners and skin; estimating the

influence of the difference and the related thermal strains and stresses on postbuckling behavior,

skin reduction factors and load-carrying capability of stiffened composite panels;

account of thermal effects and a real nonlinear stress-strain relation for an adhesive

layer -- analytical and finite-element models of joints in composite structures;

parametric analyses of composite structures and their joints -- comparing various

methods to estimate the accuracy and applicability areas thereof and the structural parameters.

A schematic and the assumed dates of the new work package are represented in Fig.3.37.

Rescarchers (i.e., TsAGI and MGATU) and the general direction of the studies are as before.
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Table 3.2 Two-sided doubler

Characteristic

Thickness

Modulus E_

Modulus E v

Shear modulus G,v

Dimensionality

rnlTl

MPa

MPa

MPa

Sheet

2

7.104

7.10'*

2.7.104

Adhesive layer

0.1

0.35.104

0.35.104

0.25.104

Doubler

7.10 4

2.7.104

Table 3.3 ONe-sided doubler

Characteristic

i Material

Thickness t

Modulus Ex

Modulus Ey

Shear modulus G,,v

Dimensionality

mm

Sheet (L)

Aluminum

2

Adhesive layer (a)

Epoxy resin

0.1

Sheet (R)

Aluminum

7-104MPa 7.10'* 0.35"104

MPa 7.104 0.35.104 7.104

MPa 2.7.104 0.25.104 2.7.104



Table 3.4 Inserted joint

Characteristic

Material

Modulus F_

Modulus Ey

Shear modulus G,,,

Dimensionality

MPa

MPa

MPa

Sheet (L)

Aluminum

7.104

7"1¢

2.7.1¢

Adhesive layer (a)

Epoxy resin

0.3.104

0.2.1¢

0.2.104

Sheet (R)

CFRP

0.63.1¢

Table 3.5 Symmetric overlap

Characteristic

Material

Thickness t

Modulus E,,

Modulus Ey

Shear modulus G,,,

Dimensionality Sheet (L)

CFRP

Adhesive layer (a)

mm 1

MPa 16"104 0.2"104

MPa 1.4-104 0.15.104

0.6.10 4MPa

Epoxy resin

0.1

o.o5.1o'

Sheet (R)

CFRP

1

16.10'*

1.4.1o`

0.6.1¢

Table 3.6 Asymmetric overlap

Characteristic

Material

Thickness t

Modulus Ex

Modulus Ey

Shear modulus Gxv

Dimensionality

mm

MPa

MPa

MPa

Sheet (L)

Aluminum

2.0

7.104

7.10 4

2.7.104

Adhesive layer (a)

Epoxy resin

0.1

0.2.104

0.15-104

0.05.1o`

Sheet (R)

CFRP

1.4.104

o.6.1o'
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Table 3.8 Comparing analytical (Can) and experimental (Cex) compliances

# tp to db Ep
mm mm mm N/mm 2

1 10 5 10 210000
2 10 3.75 10 210000

3 10 2.5 10 210000

4 10 5 I0 71000
5 10 5 5 3600

Ed
N/mm 2

210000

210000
210000

210000

3600

Eb
Nlmm2

210000

210000

210000

210000
3600

Can Cex

mm/N mm/N

0.0345 0.030

0.00347

0.0384

0.0520
2.28

0.032

0.038

0.047
2.3

-f
%

15
8

1

11

-1

Table 3.9 Local stresses at screw holes in skin (os) and doubler (¢_D)

Bolt AP, Kis Kid K2s K2d (d__)# N Kr
|

1-5 9.70 1.85 1.85 3.18 3.18 0.375

2-5 8.95 1.85 1.85 3.18 3.18 0.311
3-2 8.75 1.80 1.80 3.15 3.15 0.328

!-! 9.70 1.85 !.85 3.18 i3.18 0.375

2-4 8.70 !.85 1.85 3.18 3.18 0.335

3-1 8.22 1.80 1.80 3.15 3.15 0.308
1-3 9.22 1.85 1.85 3.18 3.18 0.355

2-3 8.47 1.80 1.80 3.15 3.15 0.317
1-2 10.20 !.85 1.85 3.18 3.18 0.393

2-2 9.32 1.80 1.80 3.15 3.15 0.349

1-1 11.45 1.85 1.85 3.18 3.18 0.441
2-1 10.60 1.80 i.80 3.15 3.15 0.397

0.203

0.188
0.178

0.315

0.287

0.264
0.304
0.272

0.393
0.349

0.529

0.477

0.241
0.190

0.182
0.349
0.308

0.45 !

0.441
0.585

0.607

0.349

0.572

0.667

0.190
0.443

0.522
0.381

0.409
0.254

0.277

O'Sloc

0.375

0.344

0.328

0.616

0.585
0.490

0.704
O.625
0.844

0.790

1.026

1.004

_Dloc

0.552

0.760
0.845

0.505

0.732
0.786

0.685

0.681
0.647

0.626

0.529
0.477



Table 3.10 Experimentally obtained values of radial interference (in

microns)

Collar

2

3

0 5 10

0 +10 i0

0 -10

0 0

0 -10

0 +10

0 0

0 -10

0 +20

0 -10

0 +20

0 +50

0 +50

+10

0

0

+40

0

1 0 +20 +10

2 0 +10 0

Radial displacements, mum

Load, Px 10-4, N

15 20 25

With rubber layer
+20

+30

+10

+70

+110

+50

+ 140

+150

+170

+20

+40

i-10

+50 +250

+ 110 +270

+ 130 + 260

Without rubber la,,er

-30 -40 -50

-10 -10 -10

3 0 0 -30

+10 0

+!0 +30

0 +20

+ 10 +40

+60 + 150

+50 +60

+50 +80
+80 +110

+ 120 + 140

+130 +180

+ 150 +220

+200 +260

4 0 + 10 +40

30 135 4O

+20

+40

0

+80

+140

+!i0

+160

+200

+230

+260

+300

+350

-5O

+10

+50 +30 +80 +80

-120 +140 +180 +200

+5O

-20

+140

+130

+230

+210

+350

+370

+5O

+7O

+180

+210

+260

+180

+380

+420

0 -10

-10 +20

+90 +110

+210 +240

Table 3.11 Distribution ofcontactforces over the collars

Contact nodes Ni sin _i Nisin _

5 97030 0.510 49485.3
49485.3

10

11

12

13

18

19

20

21

28

29

30

Total load on collar 1

33100

11800

46030

12900

Total load on collar 2

36640

25610
40430

19010

Total load on collar 3

32520

59650
79550

Total load on collar 4

Gross total

0.419

0.416

0.433

0.379

0.385

0.390

0.394

0.362

0.394

0.447

0.447

13868.9

4908.8

19931.0
4889.1

43597.8

14106.4

9987.9

15929.4
6881.6

46905.3

12812.9

26663.6

35558.9

75035.4

215023.8
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Figure 3.7. Plate a one-sided doubler
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Figure 3.14.
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Figure 3.28. Finite element model of propfan blade root
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